精准医疗/个性化医疗是医疗保健领域的热门话题。精准医疗通常以“在正确的时间以正确的剂量为正确的患者提供正确的药物”为座右铭,它是一种合理治疗的理论,也是使用生物标记物个性化健康干预(例如药物、食品、疫苗、医疗器械和锻炼计划)的实践。然而,地球外的外星人在阅读当代诊断学教科书时可能会认为精准医疗只需要文献中无处不在的两种生物分子:核酸(例如 DNA)和蛋白质,它们分别被称为生物学的第一和第二个字母表。然而,精准医疗/个性化医疗界往往低估了生命的第三个字母表,即“糖代码”(即存储在聚糖、糖蛋白和糖脂中的信息)。本文汇集了精准/个性化医学科学、药物糖组学、新兴技术治理、文化研究、当代艺术和负责任创新领域的专家,共同批判性地评论了生命三大字母的社会物质性。首先,研究了个性化糖医学和聚糖生物标记物靶向疗法的当前转变。接下来,我们讨论了糖密码的解开可能落后于 DNA 和蛋白质密码的原因。虽然社会科学家历来都注意到建构主义的重要性(例如,人们如何解释技术,并将他们的价值观、希望和期望融入新兴技术),但生命科学家依靠技术的物质特性来解释为什么某些创新会迅速出现,比其他创新更受欢迎。社会物质性的概念通过强调社会和物质对知识的贡献与日常实验室生活中呈现给我们的现实之间的内在纠缠,将这两种解释融为一体。因此,我们提出了一个基于社会物质概念视角的假设:因为物质性和物质的综合性
CRISPR/Cas 系统,特别是 CRISPR/Cas9(Jinek 等人,2012;Cong 等人,2013),已被开发为一个强大而多功能的平台,用于操作各种物种的基因组。近年来,许多报告表明其在人类基因治疗和生命科学研究以及动植物育种方面具有强大的潜在应用。本研究主题“精准基因组编辑技术和应用”中的集合可能就是明证。通常,CRISPR/Cas9 核酸酶用于切割目标基因组 DNA 以产生位点特异性双链断裂 (DSB),主要通过非同源末端连接 (NHEJ) 修复,或在较小程度上通过同源定向修复 (HDR) 修复。经典的 NHEJ 修复途径可产生小的插入或缺失 (indel),通过在开放阅读框 (ORF) 中引入移码导致目标编码基因的功能丧失。NHEJ 诱变是一种非常流行的基因操作策略。除了经典的 NHEJ 之外,替代或准确的 NHEJ 介导的修复可以实现精确的基因组 DNA 缺失(Guo et al., 2018; Shou et al., 2018)。Chao 等人和 Zhao 等人在本研究主题中的两篇论文分别描述了等位基因特异性敲除和双基因敲除小鼠模型的制造,用于快速疾病基因验证和人类异种移植研究。N6-甲基腺苷 (m6A) 是一种成熟的真核 mRNA 表观遗传修饰。越来越多的研究发现了 m6A 甲基化的意义,这催生了“表观转录组学”这一新兴领域。本卷中的另一篇文章( Huang 等人)描述了小鼠精原细胞 GC-1 细胞中脂肪质量和肥胖相关( Fto )基因的敲除研究,该基因已被证明作为 m6A 去甲基化酶作用于表观转录组( Li 等人,2017 年; Lin 等人,2017 年)。另一方面,HDR 修复途径依赖于同源供体 DNA 在 DSB 位点产生靶向基因敲入或在两个 DSB 位点之间产生基因替换。精确的点突变和设计的小插入/缺失也可以通过这种方法实现。本专题中的一篇论文介绍了利用CRISPR/Cas9介导的HDR在人诱导性多能干细胞(iPSC)中精准校正Rett综合征(RTT)中甲基-CpG结合蛋白2(MECP2)基因的努力。该报道为基于iPSC的疾病建模和基因校正治疗提供了参考(Le等)。虽然基于HDR的基因组可以实现基因插入和精准替换,但在精准编辑过程中仍面临一些缺点,包括HDR效率低、双等位基因靶向失败、正向选择的复杂性以及选择标记的重新删除。
1 再生疗法中心(CRTD),德累斯顿工业大学,01307 德累斯顿,德国;giovanni.pasquini@tu-dresden.de(GP);Anka.Kempe@tu-dresden.de(AS) 2 神经解剖学和发育生物学研究所(INDB),埃伯哈德卡尔斯大学图宾根,72074 图宾根,德国;virginia.cora@uni-tuebingen.de(VC);Kevin.Achberger@uni-tuebingen.de(KA);lena.antkowiak@uni-tuebingen.de(LA);Stefan.liebau@uni-tuebingen.de(SL) 3 眼科系,尤斯图斯-李比希大学,35392 吉森,德国;brigitte.mueller@augen.med.uni-giessen.de(BM); tobias.wimmer@augen.med.uni-giessen.de(TW);Knut.Stieger@uniklinikum-giessen.de(KS)4 图宾根大学医学遗传学和应用基因组学研究所,72076 图宾根,德国;sabine.fraschka@med.uni-tuebingen.de(SA-KF);Nicolas.Casadei@med.uni-tuebingen.de(NC)5 图宾根 DFG NGS 能力中心,72076 图宾根,德国 6 图宾根大学眼科研究所眼科系,72076 图宾根,德国; marius.ue ffi ng@uni-tuebingen.de 7 Universitäts-Augenklinik Bonn,波恩大学,眼科系,53127 波恩,德国 * 通信地址:volker.busskamp@tu-dresden.de † 这些作者对这项工作做出了同等贡献。
2006 年至 2018 年美国患者对基因组学信息药物治疗的估计反应 ALK 表示间变性淋巴瘤激酶基因;ALL,急性淋巴细胞白血病;AML,急性髓细胞白血病;BRAF,B-raf 基因;BRCA,乳腺癌基因;CLL,慢性淋巴细胞白血病;CML,慢性髓细胞白血病;EGFR,表皮生长因子受体基因;FLT3,Fms 样酪氨酸激酶受体 3 基因;GI,基因组信息;GIST,胃肠道间质瘤;GT,基因组靶向;ERBB2/HER2,人类表皮生长因子受体 2 基因;IDH2,异柠檬酸脱氢酶 2 基因;KRAS WT,K-Ras 野生型基因;MSI-high,高微卫星不稳定性; NSCLC,非小细胞肺癌;Ph+,费城染色体阳性;ROS1,c-ros 致癌基因 1。a 当未报告或未达到中位反应持续时间时,我们假设为 80 个月。
摘要 本研究调查了遗传性乳腺癌患者中 BRCA1 和 BRCA2 基因的表达谱,重点介绍了它们的诊断、预后和治疗意义。从 150 名参与者中采集了外周血样本,其中包括 90 名有乳腺癌家族史的患者和 60 名健康对照者。使用定量实时 PCR (qRT-PCR),我们量化了 BRCA1/2 mRNA 水平并评估了它们与肿瘤等级、分期和治疗反应等临床特征的相关性。结果显示,与非携带者和对照组相比,突变携带者的 BRCA1/2 表达显着下调,这与更高的肿瘤侵袭性和更差的预后相关。这些发现表明,BRCA1/2 表达谱可以作为遗传性乳腺癌风险分层、早期检测和治疗优化的可靠生物标志物。进一步探索基因表达动态可能为个性化管理策略铺平道路。关键词:BRCA1、BRCA2、表达谱、乳腺癌、风险分层、精准医疗引言过去二十年,遗传生物标志物的研究彻底改变了我们对癌症生物学的认识,并推动了我们的诊断、预后和治疗策略。卵巢癌是少数几种经常出现晚期诊断和高死亡率的遗传性癌症之一。特别是对于 BRCA1 和 BRCA2 基因突变,基因面板检测已成为精准医疗的重要武器,可提供个性化的治疗计划和更好的患者预后。(1)在本引言中,我们探讨了 BRCA1/2 在遗传性癌症中的重要性、基因面板检测的价值以及对个性化医疗的影响。
精准农业对于实现可持续粮食生产以满足日益增长的粮食需求至关重要。近几十年来,人工智能 (AI) 和物联网 (IoT) 的技术进步有助于解决各种农业领域问题,优化资源利用率(例如水、农药、肥料、种子、能源),改善生产管理和生产力,并减少对劳动力的依赖。人工智能和物联网应用越来越多地用于精准农业应用,例如作物生长监测、除草控制、病虫害检测、种植、作物产量估算、定向喷洒和授粉、智能灌溉和养分管理、田间分析和植物表型分析。例如,使用机器学习和深度学习模型的基于物联网的应用被广泛用于识别水果、蔬菜、杂草、害虫和疾病,并测量土壤质量和养分。这些信息有助于提供更好的作物管理实践。尽管人工智能和物联网技术在精准农业中取得了进展,但以 AIoT 形式结合使用这些技术仍处于早期阶段,在数据采集和连接以及基于边缘计算处理能力的人工智能算法优化等方面仍存在许多挑战需要解决。本研究课题重点关注人工智能和物联网应用领域在大田作物和特种作物精准农业技术方面的最新进展。本研究课题吸引了 9 篇研究文章和 3 篇评论文章。这些文章揭示了应用机器学习和深度学习技术在各种精准农业应用方面的研究进展和趋势。机器人采摘在解决手工劳动密集型和时间敏感的采摘作业的劳动力短缺问题方面发挥着重要作用。例如,Sun 等人提出使用 YOLO-P 来检测自然果园环境中的梨以供机器人采摘。他们提出将混洗块与卷积块注意模块 (CBAM) 集成作为 YOLOv5 网络的主干。总共使用 5,257 张包含各种背景和照明条件的图像来训练和测试所提出的方法。进行了不同的消融实验来检查稳健性和
引言 21 世纪初,人类 DNA 测序工作刚刚完成,所有重要的科学研究都卷入了狂热和乐观的浪潮之中。我们说的并不是几个身穿白大褂、孤身一人的思想家,他们被关在象牙塔里。我们说的是使用全世界所有语言的媒体,是世界政界和科学界的知名人士。几乎每个人都相信:“我们正在学习上帝创造生命的语言”[1],或者“基因组计划将彻底改变大多数(如果不是全部)人类疾病的诊断、预防和治疗”[1],以及“从长远来看,也许再过 15 到 20 年,我们将看到治疗医学的彻底变革”[2]。然后是世界各地报纸和杂志的头版。例如,2000 年 6 月 27 日,《纽约时报》刊登了整版头条:“科学家破解了人类生命的遗传密码”,并评论道:“这一成就代表了人类自我认知的顶峰” [3]。人类基因组计划面临许多限制和非常严厉的批评。其中一个主要缺点当然是它主要关注 DNA 序列,最初忽略了
单细胞测序 (SCS) 技术是一种在单细胞水平上分析遗传物质的方法,它为了解细胞异质性提供了广泛的见解。它拓宽了肿瘤学研究的范围,使人们能够探索不同细胞类型组织内的功能和遗传多样性。此外,SCS 还促进了转移追踪和肿瘤微环境分析等复杂生物过程的研究。然而,由于临床可及性不足和应用成本高,SCS 方法的实施受到阻碍。本综述通过关注癌症研究和精准医疗领域,研究了 SCS 技术的发展,分析了各种商业平台的吞吐量、可及性和成本趋势。尽管第三代测序平台取得了重大进展,为单细胞遗传信息测序提供了高精度、多功能性和吞吐量,但这些方法面临着高错误率、资金不足和数据分析复杂等挑战。此外,我们已经确定,过去十年的进步已经实现了个性化医疗和细胞异质性的深入分析,彻底改变了医学、生物技术和生物研究等领域。我们预计我们的分析将通过以下方式在医疗保健领域取得广泛进步:
重症肌无力 (MG) 是一种由神经肌肉接头 (NMJ) 自身抗体引起的慢性致残性自身免疫性疾病,临床特征为眼肌、骨骼肌和延髓肌波动性虚弱和早期疲劳。尽管 MG 通常被认为是一种原型自身免疫性疾病,但它是一种复杂且异质性的疾病,表现出不同的临床表型,这可能是由于与不同的免疫反应性、症状分布、疾病严重程度、发病年龄、胸腺组织病理学和对治疗的反应相关的不同病理生理环境所致。目前基于国际共识指南的 MG 治疗可以有效控制症状,但大多数患者无法达到完全稳定的缓解,需要终生免疫抑制 (IS) 治疗。此外,其中一部分患者对传统 IS 治疗有抵抗力,这凸显了对更具体和量身定制的策略的需求。精准医疗是医学领域的一个新领域,有望大大提高多种疾病(包括自身免疫性疾病)的治疗成功率。在 MG 中,B 细胞活化、抗体再循环和补体系统对 NMJ 的损伤是关键机制,创新生物药物针对这些机制的靶向性已在临床试验中被证明是有效和安全的。从传统 IS 转向基于这些药物的新型精准医疗方法可以前瞻性地显著改善 MG 护理。在本综述中,我们概述了 MG 背后的关键免疫致病过程,并讨论了针对这些过程的新兴生物药物。我们还讨论了未来的研究方向,以满足根据遗传和分子生物标志物对患者进行内型分层的需求,以便在精准医疗工作流程中成功做出临床决策。
胆管癌 (CCA) 是肝胆系统第二常见的原发性恶性肿瘤。不幸的是,CCA 通常在晚期才被诊断出来,此时不建议进行可能治愈的手术治疗。接受手术的患者实现完全切除的概率约为 25% (1),即使完全切除肿瘤,复发风险也超过 50%。识别和验证可靠的生物标志物对于胆道癌 (BTC) 患者的早期发现、准确诊断、适当的分期/预后、治疗选择和有效监测至关重要 (图 1)。实现早期诊断仍然是提高生存率的挑战,尽管已经发现了许多有希望的生物标志物 (2),但迄今为止还没有一种生物标志物用于临床实践。