我们知道基因组学和精确医学方面的新领域具有彻底改变医疗保健的能力,因此,加速基因组医学对于NHS医疗保健的未来至关重要。但是,这些进步可能会留下那些已经遭受种族健康不平等的社区。数据集缺乏多样性,不仅是基因组学和生物医学研究,而且在医疗保健研究中都有据可查的挑战。历史上,大多数人类基因组研究都是对欧洲血统人群进行的。这种代表性不足限制了研究结果的普遍性,以及在非欧洲血统人士的临床护理中使用基因组学的可行性,因此加剧了健康不平等。
2023 年 12 月 31 日 — 2021 年 9 月 24 日。阈值。(U) 化学、生物、放射或核。(CBRN) 生存能力。PrSM 被指定为 CBRN 生存能力任务关键 IAW...
摘要:地球表面的三维数据可以支持多种类型的研究,例如水文、地貌、环境监测等等。但是,由于在现场获取这些数据的难度,免费提供的数字高程模型 (DEM) 已被广泛使用,因此,越来越有必要检查它们的准确性以确保它们根据适当的比例正确适用。然而,还没有研究根据巴西制图精度标准 (PEC) 专门评估 ALOS PALSAR、GMTED2010、SRTM 和 Topodata DEM 的垂直精度。因此,本文旨在使用巴西大地测量系统的官方高精度测高网络数据来评估上述 DEM 的质量。误差统计分析结果表明,DEM 具有与 1:100,000 或更小比例兼容的应用,尽管 GMTED2010 的精度低于其他 DEM,但根据巴西 PEC,它也可以归类为同一精度类别。我们得出结论,DEM 评估对于确保其正确应用非常重要,因为它们可用于许多研究,因为这些数据几乎适用于地球上的所有地区。
激光还有一种不太为人所知的应用是卫星激光测距。在本月的专栏中,来自马里兰州格林贝尔特 NASA 戈达德太空飞行中心 (GSFC) 陆地物理实验室 (LTP) 的 John Degnan 和 Erri cos Pavlis 向我们介绍了卫星激光测距,并描述了利用该技术追踪两颗 Navstar GPS 卫星的努力。Degnan 博士是 LTP 的空间大地测量和测高项目办公室负责人。他自 1964 年起就受雇于 GSFC,当时作为德雷塞尔大学的实习生,他参加了对 Beacon Explorer B 卫星的首次激光测距实验。Pavlis 博士是 LTP 的高级大地测量学家,隶属于马里兰大学天文系。他的研究兴趣包括卫星轨道动力学和空间大地测量数据分析。
摘要:飞行高度是校正机载测量期间测量的陆地放射性核素产生的伽马信号的基本参数。无人机辐射测量的前沿需要轻便而精确的高度计,飞行高度距离地面约 10 米。我们为飞机配备了七个高度传感器(三个低成本 GNSS 接收器、一个惯性测量单元、一个雷达高度计和两个气压计),并分析了在 (35–2194) 米高度范围内在海上收集的约 3 小时的数据。在低海拔(H < 70 m)下,雷达和气压高度计提供最佳性能,而 GNSS 数据仅用于气压计校准,因为它们受到来自海上的多径引起的大噪声的影响。50 m 高度的 ~1 m 中位标准偏差影响地面放射性同位素丰度的估计,不确定度小于 1.3%。GNSS 双差分后处理显著提高了 H > 80 m 的数据质量,包括高度中位标准偏差以及重建和测量的 GPS 天线距离之间的一致性。在 100 m 高度飞行时,由于飞行高度的不确定性,地面总活动的估计不确定性约为 2%。
1 塞浦路斯研究所考古与文化科学技术研究中心 (STARC),尼科西亚,塞浦路斯 d.abate@cyi.ac.cy 2 摄影测量与测绘组,ICube-TRIO 实验室 UMR 7357 INSA 斯特拉斯堡,法国 arnadi.murtiyoso@insa-strasbourg.fr 第二委员会 关键词:捆绑调整、摄像网络、风筝摄影、考古文献、DBAT 摘要:价格实惠且现成的无人机系统 (UAS) 进入商业市场,最近提升了考古学家的测绘能力。硬件解决方案确实得到了更精确的飞行计划软件的支持,从而可以提高 3D 模型在空间分辨率和几何精度方面的可靠性。然而,在过去的几十年里,航空摄影主要是利用安装在风筝、气球和杆子上的成像传感器进行的。尽管这些平台是一种经济实惠且用户友好的解决方案,但它们的使用无法按照有序的数据收集方式收集图像,因此在网络设计中引入了可能妨碍摄影测量重建的因素。本研究旨在通过使用商业软件和 DBAT(阻尼束调整工具箱)重新处理在联合国教科文组织考古遗址 Khirokitia Vouni(塞浦路斯)收集的各种数据集,评估束调整 (BA) 的准确性和摄影测量重建的可靠性。1.介绍
用于精确分析,在四26天内分析了三个不同的等离子体池,总共有312个。在短期可变性分析中,分析了两个队列:26个健康个体的阿斯利康MFO队列(中位年龄20岁)和70名青春期前中国妇女(中位年龄22.5)的队列在3个月内监测。长期可变性分析涉及两名47岁和57岁的成年男性,分别监测了5和10年。分别每3个月零3周收集样本。IgG n-聚糖分析遵循了独立的方法,通过分离IgG,其随后的变性和脱糖基化,然后进行聚糖清理和标记。毛细血管凝胶电泳用激光诱导的荧光(CGE-LIF)和超级性能液相色谱分析用于聚糖分析。统计分析
摘要 — 变分量子算法 (VQA) 依赖于参数化单元电路针对目标函数的迭代优化。由于量子机器噪声大且资源昂贵,因此必须适当选择 VQA 的假设,并使其初始参数尽可能接近最优值,因为这将改善并加速算法在量子设备上执行的精确收敛。这项工作通过提出 CAFQA(一种用于量子精度的 Clifford 假设)来解决寻找初始假设参数的问题。CAFQA 假设是一种仅使用 Clifford 门构建的硬件高效电路。在此假设中,通过经典模拟在 Clifford 参数空间中进行有效搜索来选择可调门的初始参数,从而产生合适的稳定器状态。结果表明,产生的稳定器状态始终等于或优于传统的经典初始化方法(例如 Hartree-Fock),即找到合适的计算基态,并且通常在量子设备上执行和探索之前就产生高精度估计。此外,该技术适用于经典计算,因为 a) 仅 Clifford 量子电路可以在多项式时间内进行经典精确模拟,以及 b) 离散 Clifford 空间虽然量子比特数量呈指数级增长,但可以通过贝叶斯优化进行有效搜索。对于变分量子特征求解器 (VQE) 任务(即估计多达 20 个量子比特的分子系统的基态能量),CAFQA 的 Clifford Ansatz 实现了接近 99% 的平均准确度,并且能够恢复高达 99.99% 的 Hartree-Fock 初始化分子相关能量。值得注意的是,该方法的可扩展性允许对具有挑战性的铬二聚体 (Cr 2 ) 进行初步的基态能量估计,其精度高于 Hartree-Fock 所达到的精度。CAFQA 还在优化任务上进行了评估,特别是高达 18 个量子比特的 MAXCUT 问题。借助 CAFQA 的高精度初始化,VQA 的收敛速度加快了 2.5 倍。总之,这项工作表明稳定器状态是变分算法的高精度假设初始化。此外,它突出了量子启发式经典技术作为 NISQ 时代及以后 VQA 的替代方案和支持方法的潜力。
与小分子药物或抗体不同,基于细胞的thera可能会通过启动上下文依赖性治疗作用来感知各种输入信号和重新考虑(1,2)。尽管自重组DNA和病毒技术的早期以来,尽管基于基因和细胞的疗法已被视为具有巨大的希望,但在过去的十年中,它们才刚刚开始在制药行业中占据中心地位(3 - 5)。目前,这种疗法的监管部门批准正在加速生物技术和医学的技术革命(6),这些变化有可能在全球经济和社会中产生构造转变。例如,格利贝拉(Glybera)于2012年在欧洲市场上被释放为一种基因治疗疗法,旨在逆转脂蛋白脂肪酶缺乏症,但几年后,每名患者的治疗费用迫使其征收100万美元(5)(5)。,尽管最近批准的嵌合