三重军用防护箱,抗压、防水、吸能两块锂电池及充电器,PDA配件,防辐射罩配件万能充电器及车充,4张SD存储卡及读卡器可选配件:大电池,座式测试支架,蓝牙打印机,磨机,手动压机,不同目数的筛子
在这里,我们提出了一种用于全面PAM表征的新型细胞分析,该测定忠实地报告了人类细胞中不同DCAS蛋白的PAM要求。These assays enable accurate detection of greatly expanded PAM profiles for our lead dCas effectors (dCasONYX, dCasRUBY, dCas- TOPAZ), enabling the efficient targeting of disease-causing genes.These assays enable ongoing engineering and character- ization of our novel dCas in relevant genomic contexts to facili- tate their translation to therapeutics.总的来说,我们介绍了在我们的宝石表观遗传编辑平台的核心优化紧凑和精确的CAS分子的工作,并证明了它们广泛的效用,这是治疗患者中棘手疾病的主要进步。
事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
在陆地机器人自主导航的背景下,创建用于代理动力学和感官的现实模型是机器人文献和商业应用中的广泛习惯,在该习惯中,它们用于基于模型的控制和/或用于本地化和映射。另一方面,较新的AI文献是在模拟器或Ai-thor的模拟器或端到端代理上进行训练的,在这种模拟器中,重点放在照相现实渲染和场景多样性上,但是高效率机器人动作具有较少的特权角色。所得的SIM2REAL差距显着影响训练有素的模型转移到真正的机器人平台。在这项工作中,我们探讨了在设置中对代理的端到端培训,从而最大程度地减少了Sim2real Gap,在感应和驱动中。我们的代理直接预测(离散的)速度命令,这些命令是通过真实机器人中的闭环控制维护的。在修改的栖息地模拟器中鉴定并模拟了真实机器人的行为(包括底盘的低级控制器)。探视和定位的噪声模型进一步促进了降低SIM2REAL间隙。我们在实际导航方案上评估,探索不同的本地化和点目标计算方法,并报告与先前的工作相比的性能和鲁棒性的显着增长。
材料和方法:这项随机对照开放的两臂试验包括IVF患者,并在胚胎转移前评估了免疫子宫内膜环境和精确治疗(ET)。2015年10月至2023年2月,有493名患者入学。子宫内膜活检。子宫内膜免疫促进涉及子宫内膜中细胞因子生物标志物的分析。如果诊断出免疫子宫内膜失调,则计算机随机化将患者分配给常规ET(无视免疫发射)或个性化ET(具有适合免疫功能的精确治疗)。主要分析的重点是使用改良意图对治疗人群(MITT)证明精度治疗的优势,不包括没有ET的患者。主要终点是ET第一次尝试后的活出生率(LBR)。
Prof. Rajnish Joshi, General Medicine Prof. Balakrishnan S, Pharmacology Prof. Vijender Singh, Psychiatry Prof. Vaishali Walke, Pathology & Lab Medicine Dr Saikat Das, Radiation Oncology Dr Swagata Brahmachari Dr Shubham Atal Dr Vaibhav ingle Dr Ankur Joshi Dr Brijesh Kumar Singh mr a. p dwivedi
精确的脉冲定时和时间编码在昆虫的神经系统和高阶动物的感觉外围中得到广泛应用。然而,传统的人工神经网络 (ANN) 和机器学习算法无法利用这种编码策略,因为它们的信号表示是基于速率的。即使在人工脉冲神经网络 (SNN) 的情况下,确定时间编码优于 ANN 的速率编码策略的应用仍然是一个悬而未决的挑战。神经形态传感处理系统为探索时间编码的潜在优势提供了理想的环境,因为它们能够从相对脉冲定时中有效地提取聚类或分类时空活动模式所需的信息。在这里,我们提出了一个受沙蝎启发的神经形态模型来探索时间编码的好处,并在基于事件的传感处理任务中对其进行验证。该任务包括仅使用八个空间分离的振动传感器的相对脉冲定时来定位目标。我们提出了两种不同的方法,其中 SNN 以无监督的方式学习聚类时空模式,并展示了如何通过分析和多个 SNN 模型的数值模拟来解决该任务。我们认为,所提出的模型对于使用精确脉冲时间进行时空模式分类是最佳的,可以用作评估基于时间编码的事件感知处理模型的标准基准。
近年来,已经提出了连续的潜在空间(CLS)和DISCRETE潜在空间(DLS)深度学习模型,以改善医学图像分析。但是,这些模型遇到了不同的挑战。cls模型捕获了复杂的细节,但由于其强调低级特征,因此在结构表示和易男性方面通常缺乏解释性。尤其是,DLS模型提供了可解释性,鲁棒性以及由于其结构性潜在空间而捕获粗粒度信息的能力。但是,DLS模型在捕获细粒细节方面的功效有限。为了确定DLS和CLS模型的局限性,我们采用了Synergynet,这是一种新型的瓶颈体系结构,旨在增强现有的编码器 - 核编码器分割框架。Synergynet无缝地将离散和连续的表示形式整合到利用互补信息中,并成功保留了细学的表示的细节。我们对多器官分割和CAR-DIAC数据集进行的实验实验表明,SynergyNet的表现优于包括Transunet:Transunet:DICE评分提高2.16%的其他最新方法,而Hausdorff分别分别提高了11.13%。在评估皮肤病变和脑肿瘤分割数据集时,我们观察到皮肤病变分割的交互分数的1.71%的重新提高,脑肿瘤分割的增长率为8.58%。我们的创新方法为增强医学图像分析关键领域中深度学习模型的整体性能和能力铺平了道路。