事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
使用效率低下,不精确和亚细胞隔室化引起的现有方法,哺乳动物细胞中的鲁棒和精确的转录物靶向仍然是一个困难的挑战。在这里我们表明,群集的定期间隔短的短质体重复序列(CRISPR)-CSM Complex是原核生物中III III CRISPR免疫系统的多蛋白效应子,可提供核和细胞质转录物的手术RNA消融。作为最广泛发生的CRISPR自适应免疫途径的一部分,CRISPR-CSM使用可编程的RNA指导的机制来查找和降低靶标RNA分子,而无需诱导细胞RNA的不差异化跨性别分解,从而使其比CRISPR-Cas13家族的enzemes eNzemes的重要优势具有重要优势。使用嗜热链球菌CSM复合体的单载体递送,我们观察到高效率RNA敲低(90-99%)和人类细胞中最小的脱靶效应,超过了现有技术,包括短发蛋白RNA RNA和Cas13介导的敲击。我们还发现,催化灭活的CSM达到了特定且耐用的RNA结合,这是我们对活细胞RNA成像的特性。这些结果确立了多蛋白CRISPR-CAS效应络合物作为真核生物中RNA靶向工具的可行性和功效。
通过端粒到核(T2T)基因组学对植物种质资源的精确探索标志着植物基因组学领域的变革性一步,为对植物遗传多样性,适应性和进化的深入了解开辟了前所未有的机会。该研究主题的目的是强调测序和组装技术的最新进步,这些技术允许建造高质量的全长T2T基因组,并探讨这些突破如何促进和利用有价值的植物种植资源。实现T2T完整性对于提供染色体的详尽表示至关重要,捕获以前难以捉摸的遗传信息,并为全面的注释铺平了道路。这张广泛的遗传图提供了对基因功能,基因组结构和植物特征的遗传基础的更深入的见解,所有这些都对改善农业实践和确保植物生物多样性的可持续性都是基本的。随着我们继续目睹测序技术的快速发展的景观,该研究主题旨在促进研究T2T基因组数据的巨大潜力的研究。我们关注这些基因组见解如何增强物种保护工作,为育种计划提供信息,并为遗传资源管理提供宝贵的信息。此外,我们深入研究了可转座元素在塑造植物基因组中的作用,研究了它们与基因组结构的动态相互作用及其对适应和进化所需的遗传鲁棒性的贡献。通过将有关T2T基因组组装,可转座元素动力学以及在植物育种和保护中的应用汇总在一起,该研究主题是旨在利用植物基因组学的研究人员的综合资源。最终,我们的目标是促进植物基因组学的进一步进步,这将有助于全球农业的更具可持续性和弹性的未来。
生物制剂和小分子在炎症性肠病(IBD)中的出现标志着IBD预后的一个显着转折点,降低了皮质类固醇依赖性,住院和改善整体生活质量的速度。引入生物仿制药也增加了负担能力,并增强了对这些原本昂贵的目标疗法的机会。生物制剂尚未代表完整的灵丹妙药:一部分患者对一线抗肿瘤坏死因子(TNF)-Alpha剂没有反应,或者随后可能表现出次要反应丧失。对抗TNF药物反应不反应的患者通常对二线生物制剂的反应率较差。不确定哪个患者将从生物制剂的不同测序甚至生物学剂组合中受益。引入新的生物制剂和小分子可能会为难治性疾病患者提供替代性治疗靶点。本综述研究了IBD当前治疗策略的治疗上限以及未来的潜在范式转变。
摘要 - 基因组学是精密医学,全球粮食安全和病毒监测的基础。精确匹配是在基因组学的几乎每个步骤中广泛使用的操作之一,例如对齐,组装,注释和相互作用。现代基因组学采用Ferragina-Manzini指数(FM-索引)增强空间 - 有效的Burrows-Wheeler-Wheeler-Wheeler-Wheeler-Wheeler-Wheeler-Wheeler-Wheeler Transform(BWT),并具有其他数据结构,以允许超快速的精确匹配操作。但是,FM索引因其空间局部性和随机内存访问模式而臭名昭著。先前的工作创建GPU-,FPGA-,ASIC-甚至是基于内存过程(PIM)的加速器,以增强FM-Index搜索吞吐量。尽管他们实现了最新的FM索引搜索吞吐量,但与所有先前的常规加速器相同,但在每个DRAM行激活后仅处理一个DNA符号,因此仅处理一个DNA符号,从而遭受了记忆带宽利用率不佳。在本文中,我们提出了一个硬件加速器EXMA,以增强FM-Index搜索吞吐量。我们首先创建一个具有多任务学习(MTL)基于多任务的索引的新型EXMA表,以在每个DRAM行激活中处理多个DNA符号。然后,我们构建一个加速器以在EXMA表上进行搜索。我们提出了2阶段的安排,以提高加速器的高速公路命中率。我们介绍了动态页面策略,以提高DRAM主内存的行缓冲区命中率。我们还提出链条压缩,以减少EXMA表的数据结构大小。与最新的FM索引PIM相比,EXMA将搜索吞吐量提高了4。9倍,并增强每瓦4瓦搜索吞吐量。8×。 索引术语 - 特定于硬件加速器,ge- sickics,精确匹配8×。索引术语 - 特定于硬件加速器,ge- sickics,精确匹配
实验室Almum:Nathan Sheffield(现在:弗吉尼亚大学),Christian Schmidl(现在:RCI / Uni Regensburg),Florian Halbritter(现在:Ccri Vienna),Matthew Frlik(现在:Meduni Vinna),Johanna Klughammer(Johanna Klughammer) Nikolaus Fortelny(现在:萨尔茨堡大学),Peter Traxler(现在:Meduni Vienna),Lukas Folkman(现在:Griffifith University),Paul Datlining(现在:Xaira Therapeutics,San Francisco)
确定八个方向为优先领域 , 指导后续量子研发投入 :1) 扩大量 子技术造福社会的机会 。2) 建立 QIS 工程学科 。3)QIS 靶向 材料科学 。4) 通过 QIS 仿真探索量子力学 。5) 利用 QIS 技术 进行精确测量 。6) 为新应用生成和分配量子纠缠 。7) 表征和 缓解量子误差 。8) 通过 QIS 了解宇宙 。
(GPS) 百分之一秒的误差将是一场灾难。1为什么?对于 GPS 来说,一纳秒(0.000000001 秒)相当于地球上大约一英尺的误差。换言之,菲尔普斯以微弱优势获胜将产生近 10,000,000 英尺或约 1,894 英里的惊人误差。尽管 GPS 提供的不仅仅是计时精度,但这一被测量已成为其主要标志之一,其太空优势和兵力倍增能力也是如此。联合出版物 3-14《太空作战》将本文主要关注的“太空优势”定义为“一支部队对其他部队在太空的优势程度,这种优势允许其在给定的时间和地点开展作战,而不受太空威胁的干扰”(着重号是我加上的)。 2 尽管当时 GPS 尚未完全投入使用,但它首次用于作战是在沙漠风暴行动中,该行动通常被称为“第一次太空战争”。3 从铺路低空直升机的初始空袭到诺曼·施瓦茨科普夫将军著名的“左勾拳”,GPS 发挥了关键作用,即使在接收器部署非常有限的情况下也是如此。4 此外,几十年来,通过持久自由行动,GPS 一直是美国军方卓越太空能力的皇冠上的明珠。然而,新出现的威胁和日益复杂的外国能力对保持美国的技术和作战优势提出了新的挑战。
德里大学人类学系摘要CRISPR-CAS9以无与伦比的精度和效率为基因工程世界带来了巨大变化。这篇评论对CRISPR CAS9对精度肿瘤学的变革性影响进行了关键。这种基因工程工具为肿瘤学提供了与传统方法有益的新干预方法。crispr在寻找致癌突变,创建肿瘤模型以及使研究人员能够在个性化的治疗筛查中表现出色。本文还引起了CRISPR增强免疫疗法的进步,例如改善的CAR-T细胞功效。1。引言CRISPR-CAS9,通常称为CRISPR(群集定期间隔短的单位粒子重复序列)是一种前卫基因编辑技术,可以在修改基因组中获得无与伦比的精度。它具有广泛的基因组应用,已在各种细胞类型和生物中使用,从而使用SGRNA(单个指导RNA)(单个指导RNA)进行特定识别,从而编辑单个或多个靶基因,最终导致校正遗传缺陷或修饰植物和农作物。本质上是一种自适应免疫系统,由可编程的RNA分子和相关的DNA核酸内切酶Cas9组成,其RNA将Cas9核酸内切酶引导至特定的DNA序列,以切割双链DNA位点。在肿瘤学领域,对CRISPR-CAS9进行了广泛的研究,以达到新型的癌症治疗方法,旨在纠正启动癌性生长的遗传突变。但是,治疗方案通常是概括的。由于癌症源于许多遗传/表观遗传畸变,因此预计遗传矫正将在其轨道中阻止癌症并防止其再生。当前的癌症治疗方法具有侵入性,并具有严重的副作用。在治疗任何疾病时,在很早的阶段进行诊断是有益的,并且随着诊断区域(例如成像)的进步,可以在相对较早的阶段检测到癌症。在癌症治疗中的双刃剑,化学疗法是一种众所周知的癌症治疗方法,但除了引起肿瘤微环境(TME)的生理变化外,它还针对其他快速分裂的细胞,例如人体中的头发和肠道细胞并产生极端副作用。全部化学疗法目前是最有效的癌症治疗方法,但不幸的是,它在根除癌症方面并没有太多有效。这样的“一件尺寸适合所有”治疗可能会对人体造成很大的伤害,并且通常不够特异,无法长期成功治疗癌症。这正是精确的肿瘤学干预所在的地方。虽然还有另外两种主流基因组编辑工具,锌指核酸酶(ZFN)和转录激活剂样效应子核酸酶(Talens),但CRISPR-CAS9在这方面表现出了令人鼓舞的结果,由于易于理解,易于实现的设计,较低的成本,高效率,高效率,良好的效率,良好的效率,良好的效率,良好的效率,良好的效率,良好。通过在分子水平进行基因手术,可以靶向引起癌症的突变和
本文设计的电路结构如图3所示。发送模块、接收模块、管理寄存器不是本文关注的重点,其设计与文献[9]类似。IEEE 1588时钟同步电路由发送标志模块、接收标志模块、收发报文处理模块、管理寄存器、中断控制和IEEE 1588时钟模块组成。发送标志模块可以检测IEEE 1588报文的发送,记录报文到达的时间并保存在发送标志寄存器中。发送报文处理模块对报文进行分析,如果报文正确,则产生中断,通知上层应用程序通过读管理寄存器获取时间戳。接收模块的功能与发送模块类似,为避免重复,本文不再赘述。