简单总结:在本研究中,我们使用大量脑肿瘤图像解决了 MRI 扫描中脑肿瘤检测这一具有挑战性的任务。我们证明,通过迁移学习对最先进的 YOLOv7 模型进行微调可显著提高其在检测神经胶质瘤、脑膜瘤和垂体脑瘤方面的表现。我们提出的深度学习模型显示出令人鼓舞的结果,可以准确识别 MRI 图像中脑肿瘤的存在和精确位置。与标准技术相比,所提出的方法实现了更高的准确度,在我们的分析中准确度高达 99.5%。然而,我们承认,额外的调查和测试对于确保我们检测小肿瘤的方法的有效性至关重要。小肿瘤识别的复杂性需要对脑肿瘤识别进行持续研究并不断改进我们的检测系统。通过这条途径,我们旨在提高患者和医务人员在对抗脑癌的艰难斗争中的诊断能力。
大脑中的肿瘤是由大脑内组织细胞不受管制的出现引起的。早期诊断并确定磁共振成像中肿瘤的精确位置(MRI)及其大小对于医生团队至关重要。图像分割通常被认为是医学图像分析中的初步步骤。k均值聚类已被广泛用于脑肿瘤检测。此技术的结果是群集图像的列表。这种方法的挑战是选择描绘肿瘤的适当簇部分的困难。在这项工作中,我们分析了不同图像簇的影响。然后将每个群集分为左右部分。之后,每个部分中都描绘了纹理特征。此外,还采用双边对称度量来估计包含肿瘤的簇。最后,采用连接的组件标记来确定用于脑肿瘤检测的靶标簇。已开发的技术应用于30个MRI图像。获得了87%的鼓励精度。
“绘图计划”是您属性的准确图形或地图,显示了您的属性的大小和配置以及所有人造结构的精确位置(即建筑物,墙壁,车道,步行,围栏等)以及所有水和水通道的物体(池塘,溪流,Swales等)情节计划应显示您的财产中当前存在的内容以及正在提出的内容。绘图计划需要伴随提交给Scranton代码部门的大多数申请。极少数不需要一个人可能是为了进行住宅改变许可证或内部工作,仅在没有提出外部更改的情况下。当您对自己的财产有什么疑问时,情节计划也非常有帮助。它将帮助分区官员查看网站的特定和独特条件;它将允许您获得有关您网站的更可靠的,而不是一般的信息。当您申请分区或建筑许可时,这一点尤其重要。我需要专业的调查吗?如果您知道自己的财产线在哪里,则大多数住宅地块计划不需要专业密封和盖章。注意:栅栏和公共人行道不一定安装在财产线上;因此,不能用于确定您的属性线的精确位置。如果您不知道自己的财产线在哪里,则可能必须聘请土地测量师。情节计划应该显示什么?•财产所有人的姓名和地址。•所有停车场和车道区域的位置和尺寸。•所有相邻街道的位置和名称•所有和所有水域都包括池塘,盆地,湖泊,溪流和雨水旋转等。•任何穿越财产的地役权或其他相关法律信息。•属性线及其尺寸。•尺寸显示了所有现有结构与至少两个相邻属性线的程度。从街道线进行测量时,重要的是要指出尺寸在哪里(即“道路中心”,“铺路的边缘”,“通道的边缘”等)•确切的确定和位置。在审查您的申请或情节计划时,分区官员可能会要求您提供更多详细,具体或其他信息。可能有时可能需要您的计划由测量师或专业工程师准备。尽可能准确和完整很重要。根据不正确或不完整信息签发和批准的分区许可证可能会被撤销。
致力于帮助您促进突破性地在广泛的疾病迹象中开发最新的安全有效治疗剂,美国西海岸的空间生物学提供了有意义的网络机会和开创性的内容,并从各种空间多组合的领域中提供了开创性的内容。空间生物学领域已彻底改变了我们对人类细胞,组织和器官内空间组织和相互作用的理解,从而对人类健康和疾病提供了深刻的见解。通过绘制生物分子的精确位置,空间生物学提供了细胞过程及其环境的详细图片。然而,对于临床应用的过渡空间生物学研究仍然存在重大挑战,确保其潜力在开发精确有效的诊断和治疗方面得到了充分实现。空间生物学美国西海岸采用领先的药物和生物技术公司以及世界领先的学术机构的参与演讲,所有这些都从各种治疗范围的应用中探索了空间生物学研究的创新
尼日利亚的能源转型计划取决于增加来自可再生能源的能源结构。了解这些可再生能源的潜力所在对于提高政策制定、干预和正确决策的质量和及时性至关重要。本文旨在使用 ArcGIS 对尼日利亚主要可再生能源资源(太阳能、风能、生物质能和小型水电)的潜力进行整体评估。ArcGIS 是一个地理空间分析平台,可提供全国范围内这些潜力的数据和可视化效果。本文重点介绍反距离加权方法,该方法叠加了各种地图 shapefile 和电子表格,其中包含相关数据,例如:水线和水域、公路和铁路网络、作物生产、经度和纬度、风速、太阳辐射、海拔和其他相关地图数据、尼日利亚所有州和地方政府的 shape 文件。这些数据经过地理处理,以将结果与其地理位置干坐标提供的精确位置对齐。这些插值结果进一步在各种输出参数的标准限制范围内重新分类,例如农作物、森林面积、建筑区、水体、灌木/草原、荒地和水体,以揭示适合建造各种可再生能源发电厂的区域。
摘要 神经科学中的各种技术都涉及将单个探针放置在大脑的精确位置。然而,使用这种方法对大脑进行大规模测量和操作受到严重限制,因为无法将探针定位系统小型化。在这里,我们提出了一种全新的远程控制微定位方法,该方法由新型相变材料填充电阻加热器微夹钳组成,这些微夹钳以尺蠖电机配置排列。夹钳的微观尺寸、稳定性、轻柔的夹持动作、单独的电子控制和高封装密度允许使用单个压电致动器对许多任意形状的探针进行微米精度的独立定位。这种多探针单致动器设计显著减小了尺寸和重量,并允许微驱动器的潜在自动化。我们展示了在急性和慢性制剂中将多个电极准确放置在体内大鼠海马中。因此,我们的机器人微驱动器技术应该能够扩大神经科学和其他领域的多种多探针应用。
在许多情况下,通过选择物理或触摸屏键盘上的精确位置来输入文本可能是不切实际的或不可能的。我们提出了一种具有四个字符组的歧义键盘,它可以用于免眼文本输入,以及使用单个开关或脑机接口的文本输入。我们开发了一种基于利用长跨度语言模型的消歧算法来优化这些字符分组的程序。我们在离线优化实验中生成了字母约束和不受约束的字符组,并在纵向用户研究中对它们进行了比较。经过四个小时的练习,我们的结果没有显示约束和不受约束的字符组之间有显著差异。如预期的那样,参与者在第一次训练中对不受约束的组的错误率明显更高,这表明学习这项技术的门槛更高。因此,我们推荐使用字母限制的字符组,参与者能够用单手且在没有视觉反馈的情况下实现每分钟 12.0 个单词的平均输入速度,字符错误率为 2.03%。
毛细作用可用于将各向异性胶体粒子引导到精确位置,并通过使用界面曲率作为施加场来定向它们。我们在实验中展示了这一点,在实验中,界面的形状通过钉扎到不同横截面的垂直柱上而形成。这些界面呈现出明确定义的曲率场,可沿复杂轨迹定向和引导粒子。轨迹和方向由理论模型预测,其中毛细作用力和扭矩与高斯曲率梯度和与曲率主方向的角度偏差有关。界面曲率在尖锐边界附近发散,类似于尖锐导体附近的电场。我们利用这一特性在优选位置诱导迁移和组装,并创建复杂结构。我们还报告了一种排斥相互作用,其中微粒沿曲率梯度轮廓远离平面边界壁。这些现象在微粒子和纳米粒子的定向组装中具有广泛的用途,在制造具有可调机械或电子性能的材料、乳液生产和封装方面有潜在的应用。
广义上讲,将三氟甲基引入(杂)芳族化合物有三种通用方法。“程序化三氟甲基化”是一种流行的方法,它利用预先存在的功能性手柄,例如(伪)卤化物或硼酸盐,将 CF 3 基团传递到底物上的精确位置。3 另一种策略是 C − H 基团的“固有三氟甲基化”,通常通过母体(杂)芳烃与三氟甲基自由基的反应进行。4 最近受到较少关注的最后一种策略是使用一种或多种 CF 3 取代的前体进行(杂)苯并环化。具体而言,这种类型的环加成反应与前面概述的两种策略是互补的,因为 CF 3 的最终位置既不是由现有功能组的存在决定的,也不是由母体(杂)芳烃的固有偏好决定的。然而,缺点是这些反应通常需要苛刻的条件并且产生具有较差区域控制的产品。 5 我们在此报告,硼导向环加成 6 可以在温和条件下快速、区域控制地合成氟烷基取代的(杂)芳烃,从而得到可以通过 C − B 键进一步精制的产物(方案 1)。■ 结果与讨论
信息分析和人机界面 — 罗克韦尔柯林斯在信息传递和安全领域已开创了 80 多年。今天,我们正基于这些经验开发面向 21 世纪的系统:信息丰富的驾驶舱、智能瞄准系统、实时战场网络和航空信息管理解决方案。未来在于连接一切,将硬件功能融入在开放式架构上运行的软件应用程序中,通过飞机和系统扩散传感器,并控制数据的去向、分发和分析方式。我们预计,到 2030 年,信息化飞机的数量(具有先进航空电子设备、连接和信息服务和应用程序的飞机)将大幅增加。这些系统可用的数据量将更大、更复杂,需要新技术和工具来集成并转化为有意义、可操作的信息。鉴于这个更加互联的世界,改进信息分析和人机界面以提供最高效、安全和可靠的实时互联互通是基础。一个很好的例子是下一代空域的空中交通管理。该系统的骨干是新的监视系统,即自动相关监视 - 广播或 ADS-B。随着 ADS-B Out 授权将于 2020 年生效,飞机将向地面站和配备 ADS-B 接收功能的其他飞机广播有关飞机的精确位置和其他信息。处理和呈现这些信息将使空中交通管制员和飞行员更好地了解他们的环境。