全国比赛 M14 步枪(图 B-1)及其瞄准镜组成了 M21 狙击武器系统。M21 符合美国陆军射击训练单位的精确度要求,基本设计和操作与标准 M14 步枪 (FM 23-8) 相同,但部分零件是经过特别挑选和手工装配的。
方法:本研究分析了马来西亚卫生信息中心 2017 年 1 月至 2022 年 6 月的死亡记录,这些记录已编入 ICD-10。数据匿名化符合道德标准,经过质量检查后,共纳入 387,650 份死亡登记。数据集仅限于三位数的 ICD-10 代码,经过清理和 80:20 的训练测试分割。预处理涉及 HTML 标签删除和标记化。ML 方法,包括 BERT(来自 Transformer 的双向编码器表示)、Gzip+KNN(K 最近邻)、XGBoost(极端梯度提升)、TensorFlow、SVM(支持向量机)和朴素贝叶斯,都已针对自动 ICD-10 编码进行了评估。使用 Amazon SageMaker(亚马逊网络服务,华盛顿州西雅图)对模型的准确度、F1 分数、精确度、召回率、特异性和精确度-召回率曲线进行了微调和评估。敏感性分析解决了不平衡数据场景,增强了模型稳健性。
我们介绍了 LeoLabs 的全球相控阵雷达网络。LeoLabs 的网络由四个运行中的雷达站组成,两个超高频雷达站和两个 S 波段雷达站,还有一个正在建设中的 S 波段雷达站。我们展示了雷达网络性能的定量分析,包括网络和组件级性能指标。与独立数据集的比较证明了仪器的准确性和精确度,而雷达站之间的比较证明了 LeoLabs 测量的自洽性和 LeoLabs 轨道状态矢量估计的精确度。我们还展示了模拟网络在编目和跟踪以前未编目的驻留空间物体方面的性能。我们展示了除了跟踪 LEO 中的 RSO 之外,网络如何用于各种任务。我们提供了网络在发射和早期轨道阶段操作期间的性能特征。最后,我们表明 LeoLabs 的雷达能够探测地球静止轨道 (GEO) 上的物体。这证明相控阵雷达是跟踪地球静止轨道物体的可行技术。
摘要:浅水测深是土木工程、港口监测和军事行动等各个领域的重要研究课题。本研究介绍了几种使用海上无人系统 (MUS) 评估浅水测深的方法,该系统集成了先进和创新的传感器,例如光探测和测距 (LiDAR) 和多波束回声测深仪 (MBES)。此外,本研究全面描述了同一地理区域内的卫星测深 (SDB) 技术。每种技术都从其实施和结果数据方面进行了全面概述,然后对其准确性、精确度、快速性和操作效率进行了分析比较。在 MUS 调查之前,使用传统方法进行的水深参考调查以及所有方法之间的交叉比较来评估方法的准确性和精确度。在对调查方法的每次评估中,都会进行全面的评估,解释每种方法的优点和局限性,从而使读者能够全面了解这些方法的有效性和适用性。该实验是作为“使用海上无人系统 23 的机器人实验和原型设计”(REPMUS23)多国演习的一部分进行的,该演习是快速环境评估 (REA) 实验的一部分。
识别产生破坏性风暴潮的热带气旋以进行风险评估(例如从用于气候研究的大型降尺度风暴目录中识别),通常很棘手,因为它需要进行许多昂贵的蒙特卡罗流体动力学模拟。在这里,我们表明替代模型从准确度、召回率和精确度的角度来看很有前景,并且它们可以“推广”到新的气候情景。然后,我们提出了一种信息丰富的在线学习方法,仅使用一些流体动力学模拟即可快速搜索产生极端风暴潮的气旋。从具有详细风暴潮流体动力学模拟的最小 TC 子集开始,替代模型选择信息丰富的数据进行在线重新训练,并迭代改进其对破坏性 TC 的预测。对大量降尺度 TC 目录的结果表明,使用不到 20% 的模拟作为训练,检索罕见的破坏性风暴的精确度为 100%。信息丰富的采样方法高效、可扩展到大型风暴目录,并可推广到气候情景。
不断变化的全球医疗环境需要差异化、可靠且可重复的医疗材料,以帮助为当前和下一代医疗设备提供精确度、准确性和一致性。POREX ® Virtek™ 医用 PTFE 材料和过滤器是经过性能测试且技术先进的多孔材料组合,专为当今具有挑战性的医疗外科设备应用而设计。
为了确保准确性,在绝对零的温度下进行实验,将背景噪声降低至几乎没有。KERR谐振器是关键的,因为它可以扩增通常无法观察到的量子效应。因为它可以对具有极高敏感性的两光孔信号做出响应,因此研究人员能够使用它以前所未有的精确度探索相过渡 - 传统设置简直无法实现。
“电磁炮技术”(THEMA)项目将使电磁炮关键部件更加成熟,特别是脉冲电源、电磁轨道炮和超高速射弹。它将提供一种具有更高精确度和杀伤力的高超音速拦截器,以击败主要的挑战性威胁。电磁炮有望补充导弹和火炮等其他防御手段,并可适用于各种海军平台和陆地永久防空系统。