b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
在量子状图林基中开发的Spad evalkit基于单个光子计数的时角的过程,并以20 picose第二的时间分辨率启用测量。这允许研究基于量子的应用程序,以及用于视野内诊断的新解决方案或医疗技术。照片:Imms。
电流源(CS)具有很大的意义,例如计量学单元的校准以及基本物理学中旋转电偶极矩的测量。[1-6]参考。[1 - 6],获得高效果的要点之一是CS的稳定性。因此,应使用一些补偿方法来抑制当前的噪声。commy,CS噪声被反馈控制系统抑制,该反馈控制系统将电流转换为具有高精度电阻器的电压。[7]但是,由于电子设备中的噪声(对于Examply,1 / F噪声,热噪声和射击噪声),因此有效抑制低频噪声是挑战。需要在低频中使用更高的当前测量方法来解决此问题。幸运的是,根据Ampere定律,电流可以通过线圈转换为磁场,可以通过磁力计测量。目前,光学泵送磁力计(OPM)的灵敏度已达到10英尺 /√< / div>
本综述介绍了采用铁磁共振电动力学理论测量铁磁线宽、磁导率张量和饱和磁化强度的最新进展。结果表明,与常用的微扰和静磁理论相比,电动力学理论可以显著提高这些参数的测量精度。与微扰法相反,电动力学理论并不局限于小样本。它允许在适当选择的金属外壳中确定任意尺寸的球形和圆柱形旋磁样品的共振频率和 Q 因子。用电动力学理论对非常小的样本得到的结果与用微扰和静磁理论得到的结果相同。给出了微波频率下铁磁线宽、磁导率张量和饱和磁化强度的测量结果。
���������������������������������������� ...�� ������������������������������������������ �������������������������������������������� ���������������������������������������������� ������������������������������������������������ �������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������ �������� ρ ���� ����������� ������������������������������������������������������������������ �������������������������������������������������������������������������������������������� ���������������������������������������������������� ・Δ � � =ρ ���� ・ � ・ � � ・Δ � �� � =ρ ���� ・ � ・ � ・ � �� = �� � �� �� �������������������������� ρ ���� ����������������������������� ����� Δ � � ����� Δ � � �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������ ���������������� ��� ������������� ρ ���� �������������������������������� � �