量子计算中最重要的、最困难的实验工作之一是实现近乎完美的两量子比特门操作。目前,人们认为大约 10 −4 的门错误概率足够低,可以实现所谓的高效容错量子计算 1、2。囚禁离子串是实现量子计算机最有希望的候选对象之一。用离子量子门实验实现的最低门不真实性仍然在 3% 左右 3。这种几何相位门的主要限制来自自发辐射和磁场涨落 3、4。离子阱量子计算可以用两种替代的量子比特编码来实现:超精细基态量子比特和通过光跃迁连接的量子比特态。对于超精细量子比特,门操作由偶极跃迁介导的拉曼耦合执行。参考文献 3 使用了基于这种超精细跃迁的编码。然而,在这样的设置下,将自发散射降低到所需的容错水平以下是很有挑战性的 5,6 ,因为需要大量的激光功率。最近,针对超精细量子比特 7 ,提出了在四极跃迁中使用拉曼过程。然而,这种策略需要高激光功率来实现短门时间。在这里,我们提出了在光学跃迁上使用 z 型几何相位门来克服 3 实现中存在的一些限制。例如,使用光学四极跃迁可以充分降低自发辐射事件的可能性。同时还表明,磁场不敏感状态可用于 z
由于微型 LED 芯片具有广视角特性,制造高色域色彩转换微型发光二极管 (LED) 显示器面临的主要挑战之一是相邻像素之间严重的串扰效应。本研究系统地模拟了导致串扰效应的潜在因素。我们观察到,用遮光矩阵 (LBM) 精确填充每个微型 LED 芯片之间的空间可以成为缓解这种风险的有效解决方案。经过仔细研究,证明了压模辅助成型技术是制造 LBM 的有效方法。然而,实验观察进一步表明,微型 LED 表面残留的黑色 LBM 会严重降低亮度,从而影响显示性能。通过采用等离子蚀刻技术有效提取被捕获的光,成功解决了这个问题。最终,开发了一种顶部发射蓝色微型 LED 背光,该背光采用黑色 LBM 精细成型,并与红色和绿色量子点色彩转换层相结合,实现全彩色显示。我们制造的显示器原型的色域可覆盖国家电视标准委员会的122%。
由于采用了新的测量方法,Amadeus 2022 年的二氧化碳排放量已重新表述,这与碳排放减排目标的设定和科学碳目标倡议 (SBTi) 的验证有关。范围 1 排放量的变化是由于每个国家/地区的计算更加精细,意味着排放量减少了 6.7%;范围 2 的变化是由于每个国家/地区的计算更加精细,并使用了可用的残余混合转换因子,以便更准确地遵循基于市场的方法,意味着排放量减少了 1.5%;范围 3 的报告范围扩大到涵盖 GHGP 中列出的所有相关类别。
P1 女 41 先天性多发性关节挛缩 手臂和腿部运动范围和力量受限。不能举起手臂或伸展。 P2 女 23 脑瘫 粗大运动和精细运动困难。 P3 男 35 脊髓损伤(C5) 肩膀以下瘫痪,手指无法屈曲。 P4 女 38 脊髓损伤(C5) 腕部功能尚可,手部不灵活。 P5 男 47 肌营养不良症 力量有限,二头肌极其无力,无法在没有重力的情况下举起手臂。 P6 男 27 脊髓损伤(C4/C5) 一侧腕部伸展,手指无法活动,三头肌无法控制,没有精细运动。 P7 男 24 脑瘫 左臂瘫痪。 P8 男 33 脊髓损伤(C5) 可以使用二头肌,无法使用三头肌,可以锻炼到二头肌中点,再往下则无感觉。双手无精细运动功能。P9 男 22 中风 右臂不能超过 45 度。P10 男 34 脑瘫 手腕、手部难以移动,手臂无法弯曲。
CSIR已将C波段分阶段的雷达技术开发到足够的成熟度,以用于监视雷达产品和机载SAR示威者。这些阵列天线提供了宽带功能,可以允许精细分辨率SAR成像 - 如在机载的C-OWL SAR技术演示器上所示。该团队还展示了实时处理功能和精细分辨率(子测量)成像功能 - 使技术更接近于准备太空传播雷达应用程序。通过科学与创新部资助的研究和开发,该技术的某些部分也经过了辐射测试,并且在生产中可以使用第一个具有空间能力的子阵列的设计和开发,可用于实现完整的SAR卫星有效载荷。
4 perry.banks@ontoinnovation.com,5 aries.peng@ontoinnovation.com摘要 - 对异质整合的需求不断增长,由5G市场驱动,其中包括智能手机,数据中心,服务器,HPC,HPC,AI,AI和IOT应用程序。下一代包装技术需要更严重的覆盖层,以适应更大的包装尺寸,并在大格式柔性面板上使用更精细的螺距芯片互连。异质集成通过将多个硅节点和设计组合在一个软件包中,从而实现了下一代设备性能。包装尺寸预计将显着增长,在未来几年内增加到75 x 75毫米和150 x 150毫米。对于这些要求,具有精细分辨率光刻的极大的曝光场将使包装超过250 x 250毫米,而无需图像缝制,同时超过了这些包装的侵略性叠加和临界均匀性要求。满足异质整合需求的光刻挑战是市场上当前可用解决方案的暴露场大小的限制。使用缝合的多次镜头,这不仅影响生产力性能,而且会影响缝合边界处的潜在产量损失。应对上述关键光刻挑战成为异质整合的重要任务,而具有精细分辨率光刻的极大的暴露场是完成此任务的最佳解决方案之一。在本文中,选择了一个515 mm x 510 mm面板作为测试工具,我们将在此面板上展示一个具有精细分辨率技术的非常大的曝光场。此演示提供了有关该新技术将如何应对大型包装尺寸流程的挑战的结果和详细信息。关键字,预先包装,高级IC底物,大型曝光字段,精细分辨率,面板级包装,异质,覆盖,覆盖,缝线,吞吐量。
该方法可以打印具有高分辨率、复杂几何形状以及精细细节和光滑表面的物体。特别值得注意的是,材料喷射能够以“全彩”方式打印物体,即以任意颜色和颜色渐变,并同时使用多种材料打印物体,从而实现多种颜色和材料组合。作为立体光刻技术的一种先进变体,材料喷射技术为高度精细且对美观度要求高的物体提供了更广泛的制造可能性,使其成为各个工艺领域的一项宝贵技术。材料喷射通常比其他 3D 打印技术更昂贵,因为它使用复杂的打印头技术和专门开发的材料。