注释:直到今天,玻璃体的精细结构和某些功能仍未完全阐明,但是现有的知识表明CT不仅是特殊的,而且是非常复杂的组织。其对各种病理情况的异营反应的主要形式是凝胶与液化或压实馏分的形成的相关性。腐烂的胶原蛋白骨骼转移到其胚胎发生区域的趋势为视网膜在此过程中的机械参与,破裂,褶皱,分离,视网膜出血等的形成而产生了先决条件。显然,自由腔的出现 - 流体的储层可能是青光眼和视网膜脱离的发病机理的元素。临床观察到的CT骨骼可能在眼球内病理组织生长(肿瘤,系泊)中起刺激或限制作用。
利用 Mainz Microtron MAMI 新开发的 530 MeV 正电子束和弯曲硅晶体,我们首次成功通过平面通道和体积反射高效操纵正电子轨迹。这揭示了带电粒子在弯曲晶体平面之间通道时,其角分布中存在精细结构。我们的实验结果与模拟结果的一致不仅表明对带电粒子束和弯曲晶体之间相互作用的理解更加深刻,而且标志着在 GeV 范围内运行的圆形加速器中慢速提取创新方法开发的新阶段,对全球加速器都有影响。我们的研究结果还标志着通过周期性弯曲晶体中的通道过程生成先进 x 射线源的重大进展,这源于对正电子束和此类晶体之间相互作用的全面理解。
从神经活动中解码感觉刺激可以提供有关神经系统如何解释物理环境的洞察力,并促进了脑机界面的发展。然而,神经解码问题仍然是一个重大的公开挑战。在这里,我们提出了一种有效的非线性解码方法,用于从视网膜神经节细胞(RGC)的尖峰活动中推断自然现场刺激。我们的方法使用神经网络来改善准确性和可扩展性的现有解码器。对> 1000个猕猴RGC单元的实际视网膜尖峰数据进行了训练和验证,解码器证明了非线性计算的必要性,以准确地解码视觉刺激的精细结构。具体来说,自然图像的高通空间特征只能使用非线性技术解码,而低通功能可以通过线性和非线性方法很好地提取。一起,这些结果在解码大量神经元种群的自然刺激方面推进了最新的状态。
卫星大地测量法在测地学、测量工程和相关学科中得到越来越广泛的应用。特别是,现代精确和实用的卫星定位和导航技术的发展已经进入了地球科学和工程的所有领域。新的和即将发射的卫星任务以及对地球在太空中自转的监测对精细结构重力场模型的需求也日益增长。多年来,我一直觉得确实需要一本涵盖整个主题的系统教科书,包括其基础和应用。我希望这本书至少能在一定程度上满足这一要求。这里介绍的材料部分基于汉诺威大学自 1973 年以来教授的课程和国外客座讲座。我希望这些材料可以用于其他大学的类似课程。本书主要针对大地测量学、测量工程、摄影测量、制图学和测绘学等专业的高年级本科生和研究生。本书还旨在为对卫星大地测量方法和结果感兴趣并需要了解最新发展的专业人士提供信息来源。此外,本书还面向工程和地球科学相关领域的学生、教师、专业人士和科学家,例如陆地和空间导航、h
电荷半径是原子核最基本的属性之一,用于描述其电荷分布。尽管 A 1 / 3 规则很好地描述了质量数函数的总体趋势,但一些精细结构(例如沿钙同位素链的演变和相应的奇偶交错)在密度泛函理论和从头算方法中都难以描述。在本文中,我们提出了一种描述钙同位素电荷半径的新假设,即在相对论平均场模型中计算的电荷半径上添加一个校正项,该校正项与库珀对的数量成比例,由 BCS 振幅和一个参数决定,并使用 BCS 方法处理配对相互作用。新假设的结果不仅与钙同位素的数据一致,而且与氧、氖、镁、铬、镍、锗、锆、镉、锡和铅等十种其他同位素链的数据也一致。值得注意的是,这个具有单一参数的假设可以描述整个周期表中的核电荷半径,特别是奇偶交错和抛物线行为。我们希望本研究可以激发更多关于其性质及其与用于解释电荷半径奇偶交错的其他效应的关系的讨论。
摘要。耐力能力是评估电动汽车性能的关键指标。在有限的空间中提高电池组的能量密度,同时确保车辆的安全性是当前使用的技术解决方案之一。因此,本文提出了一个较小的空间和高能密度电池布置方案。比较了两个基于相同音量和不同空间布置的两个电池组的全面性能。此外,基于相同的热管理系统(PCM-File系统),使用不同的精细结构在数值上模拟了具有高能量密度的交错电池组的热性能,并使用插入式权量托管方法确定了以3C放电速率在3C放电速率下交错电池组的最佳限制结构参数。结果表明,增加填充和电池之间的接触厚度(x)可以降低最高温度,但会降低温度均匀性。此外,修复宽度(a)的变化对电池组的热量耗散性能没有显着影响。熵权重方法客观地将权重分配给最高温度(t最大)和温度差(∆ T),并确定冷却系统限制参数的最佳解决方案。发现当x = 0时。67毫米,a = 0。6毫米,交错的电池组具有最佳的全面性能。
细菌的生理学:形态学特征和细菌,营养,繁殖和培养的精细结构。真菌:真菌,分类,结构,生长和繁殖,具有医学重要性的真菌。入门寄生虫学:原生动物:结构和繁殖;线虫:结构及其在农业中的作用。有关病毒的入门知识:病毒的结构,分类和医学重要性。19小时。微生物技术:显微镜的类型,培养基的类型,包括厌氧细菌在内的微生物类型。6小时。处理微生物:在处理微生物,微生物(细菌,真菌和病毒)的分离和鉴定期间的无菌技术,微生物的枚举和微生物计数。15小时。灭菌方法:灭菌原理,通过温度(高温和低温)对微生物的控制,辐照,超声波,过滤,化学剂。19小时。微生物的生理特征:微生物的生长(生长曲线),影响微生物生长的因素,包括碳,氮,矿物质和其他维生素,温度,水活性,水活性,盐度,盐分,盐度,pH,气体,CEC,包括碳,氮,矿物质和其他来源的基本营养素。微生物的生化特性:营养类型,光致营养素,化学杀菌性,
摘要:在过去的几十年中,X 射线吸收光谱 (XAS) 已成为探测非均相催化剂结构和成分、揭示活性位点的性质以及建立催化剂结构模式、局部电子结构和催化性能之间联系的不可或缺的方法。本文将讨论 XAS 方法的基本原理,并描述用于解读 X 射线吸收近边结构 (XANES) 和扩展 X 射线吸收精细结构 (EXAFS) 光谱的仪器和数据分析方法的进展。本文将介绍 XAS 在非均相催化领域的最新应用,重点介绍与电催化相关的示例。后者是一个快速发展的领域,具有广泛的工业应用,但在实验表征限制和所需的高级建模方法方面也面临着独特的挑战。本综述将重点介绍使用 XAS 对复杂的现实世界电催化剂获得的新见解,包括其工作机制和化学反应过程中发生的动态过程。更具体地说,我们将讨论原位和原位 XAS 的应用,以探测催化剂与环境(载体、电解质、配体、吸附物、反应产物和中间体)的相互作用及其在适应反应条件时的结构、化学和电子转变。
最近,由于新的量子混合系统的出现,人们已经有了新的兴趣和实验研究,用于在固体中进行旋转,这需要操纵自旋量子状态1-3,并继续搜索可行的候选者2,4。在这项工作中,我们介绍了低语画廊(WG)模式技术,以研究杂质的顺磁性离子不成对的电子自旋共振,在Di-Electric Crystal Grattice 5-7中具有核超精美偶联。Srlaalo 4(SLA)sin- Gle晶体晶格中杂质顺磁离子的位点对称信息是通过WG多模式ESR光谱获得的(图1、2、3和4),提供了超精细结构拓宽,g因素变量和其他各向异性效应的微妙效果。wg模式光谱具有高度敏感的,与实验结果的多模式性质相结合,提供了某些具有高精度的基本物理量的值。金属配体八面体配合物中的jahn-teller效应通常会诱导电荷耦合,轨道和磁有序,位移,并在确定电子行为8-11时强调结构细节。高精细结构特征的这种高精度调查对于量子状态映射至关重要。未配对的电动旋转力矩揭示了有关旋转的信息 -
光声 (PA) 成像是一种新兴的混合成像技术,可以在增加穿透深度的情况下以高特异性和微米级分辨率非侵入性地识别组织。它采用脉冲激光作为激发源,并收集超声波响应以重建光吸收图,以反映组织区域的结构和功能细节。根据激发光和接收声音的排列方式,光声成像可以是多尺度的,从人体器官和小动物全身到单细胞等微观精细结构。PA 成像的血管特异性允许神经血管耦合神经电压成像,但迄今为止大多数工作都是通过血管和血氧波动而不是直接测量来询问神经元电压活动。在这里,我们提出了一种新颖的策略,该策略采用全场光声脑检测平台,该平台配有光稳定的电压敏感染料,可直接监测完整的癫痫小鼠脑中长时间的电压动态。通过研究大脑区域之间的连通性,可以揭示电传导通路及其方向性,这些方向性通过快速时间可视化来指示。所提供的证据突出了所提出的方法对癫痫和其他电压相关疾病的诊断和映射的潜力。