二芳二酸(L -IDOA)残基硫酸乙酰乙酰胺(HS)和硫酸真皮(DS)中的残基。在MPS I中,低水平的溶酶体IDUA活性会导致HS和DS积聚在细胞中,从而导致包括大脑在内的多个组织和器官的进行性疾病。更严重的MP形式我通常会在生命的前十年内导致智力低下和过早死亡。有两种可用的MPS I:I)使用重组人IDUA静脉注射的酶替代疗法,[2]和II)造血干细胞移植以从健康移植细胞中产生IDUA,但是,两者都有实质性的限制。例如,替代酶不能越过血脑屏障(BBB),因此对神经系统症状没有影响,而造血干细胞移植具有很大的发病率和死亡风险。此外,两种治疗方法都非常昂贵。因此,需要越过BBB并缓解MPS I的神经系统症状的小分子药物的发展是可取的。小分子抑制剂目前正在探索作为溶酶体储存疾病的治疗方法。例如,与累积底物生物合成有关的酶的抑制作用已用于底物还原疗法。最近,研究了有机固核药物Ebselen(2-苯基1,2-苯甲甲硅烷二唑-3(2 h)-One),作为MPS I的潜在底物还原治疗。[3] Ebselen通过抑制L -IDOA生物合成降低了MPS I细胞中的糖胺聚糖积聚。但是,它无法减少MPS I鼠标模型中的糖胺聚糖积累。治疗溶酶体储存疾病的另一种常见小分子方法是药理学伴侣治疗(PCT)。在PCT中,伴侣分子通常是活性位点定向抑制剂,可以结合和稳定突变酶以防止其降解并改善运输到溶酶体。[4]一次在溶酶体的低pH环境中,伴侣分离导致
关节软骨(AC)一旦损坏,修复的能力较差,进行性变性通常会导致骨关节炎(OA)。虽然AC原产质的额外细胞基质(ECM)制造的生物材料显示了修复局灶性AC缺陷的有望,但由于较大的支架机械性能,并且缺乏病因细胞中的软骨剂,必须克服几个挑战,以修复较大的负载缺陷。在这里,我们开发了一种方法来通过结合可生物吸收的3D印刷增强框架,并递送促肌抑制性基因以浸润干细胞增强软骨生成并产生更健康的AC的透明组织。对可生物吸收的多丙酮酸(PCL)3D印刷框架进行表面处理以改善其亲水性,并用于增强胶原蛋白透明质酸(CHYA)基质。然后,将机械加固的SCAF-折叠与软骨成生成转录因子Sox9进行基因激活(GA),该因子与使用糖胺聚糖结合增强的转换(GET)系统相结合的非病毒纳米粒子(NP),然后与人类Mesenchy-Malsenchy-malsensal stromsal(Hmsc)(HMSc)相结合。在软骨培养基中培养28天后,与基因自由对照相比,GA型夫人的HMSC沉积了更有指示健康透明软骨的ECM。SOX9在Ga支架上的mRNA表达是高于对照的2个磁性磁性词,而Sox9(Col2α1,Acan)的下游软骨靶标也表现出明显更高的mRNA水平。在GA支架上,促核ECM蛋白(例如COL2)的表达高(P = 0.0018),这也导致硫酸糖胺聚糖(SGAG)的产生和空间分布增强,这对健康AC的功能至关重要。总而言之,这些发现提供了证据表明,具有SOX9 NP的3D印刷仿生型促肌发育性支架的功能增强了人类干细胞在这种机械增强的支架上产生的ECM的质量。
上下文:由于其在骨胶原降解中的著名作用,半胱氨酸蛋白酶组织蛋白酶K(CATK)代表了治疗骨质疏松症的主要且有希望的药物靶标。通过CATK和细胞外基质居住的糖胺聚糖(GAG)之间形成了三型螺旋型和II胶原蛋白中,这种独特的哺乳动物特异性有效地在I型和II型胶原蛋白内有效地促成了。不幸的是,在临床试验中开发了有效的CATK的有效现场定向的抑制剂,因为它们可能会干扰其其他生物学作用。有趣的是,CATK抑制剂Tanshinone IIA磺酸与远离其活性位点(靠近GAG结合位点)的Catk遥控器结合,并有选择地抑制胶原蛋白降解。当前所追踪的项目专门用于合成,生物学筛查以及新的硝化tanshinone衍生物作为有效CATK抑制剂的硅化研究。
简单的摘要:该狗被认为是研究人类中发生的几种疾病的动物模型,因为它们呈现了相似的表型发育。在其中,我们可以强调糖尿病和胰腺炎,它们是影响胰腺内分泌和外分泌部分的疾病,并表现出伴侣动物中较高的患病率,社会成本,死亡率和发病率。这项工作旨在强调使用狗作为研究胰腺外基质变化的模型的重要性,当时受糖尿病和胰腺炎的影响。细胞外基质执行多种功能,例如细胞过程的物理支持和调节,主要由蛋白质,糖蛋白,糖胺聚糖和蛋白聚糖组成。值得注意的是,没有研究表征健康和患病的胰胰腺外基质的研究,以及与这些疾病进展的基质成分有关的研究。众所周知,大多数病理胰腺条件会通过重塑过程诱导细胞外基质会发生变化,该过程必须进行彻底研究以充分了解任何胰腺疾病的发病机理。
透明质酸(HA)是一种天然存在的非硫磺糖胺聚糖(GAG),与细胞表面相关的生物聚合物,是组织细胞外基质(ECM)的关键组成部分。以及出色的物理化学特性,HA还具有多方面的生物学作用,其中包括但不限于ECM组织,免疫调节和各种细胞过程。环境提示,例如组织损伤,感染或癌症改变HA的下游信号传导功能。与天然HA不同,HA的碎片对炎症,癌症,纤维化,血管生成和自身免疫反应具有多样化的影响。在这篇综述中,我们旨在将HA作为一种治疗性递送系统开发过程,来源,生物物理化学特性以及天然和碎片HA的相关生物学途径(尤其是通过细胞表面受体)。我们还试图概述HA(天然HA与片段)在调节炎症,免疫反应和各种癌症靶向递送应用中的潜在作用的概述。本评论还将详细讨论了基于HA的治疗系统,医疗设备和未来观点。
产品说明:Akron的肝素钠盐是根据相关CGMP指南制造,测试和发布的,并由FDA在您的药物或生物申请过程中可以参考的II型主文件(MF)支持。它是一种非巨大的活性药物成分(API),也是药物肝素最终配方的中介。该产品经过测试以符合肝素钠盐的EP标准,适用于细胞和基因治疗制造应用。肝素被用作细胞培养基中的抗凝剂,灭活了几个关键的凝血因子。Akron的肝素钠盐是一种从猪肠粘膜中提取的未分离的吸湿粉末,可以自由地溶于水。多步纯化过程会导致硫化糖胺聚糖的盐作为分子量变化的异质分子的混合物。它由D-葡萄糖胺(N-硫酸化,O硫酸化或N-乙酰化)的交替衍生物和糖苷链接(O-硫酸)的聚合物组成。Akron的肝素钠盐的化学组成以H-NMR光谱,异核相关分析(HSQC)和IR光谱法的特征。
■什么是淀粉样变性?淀粉样变性是一种蛋白质沉积疾病,其中特异性蛋白质蛋白质在病理上从其生理三级结构变成了以β-葡萄片为主的更线性形状。错误折叠的蛋白聚集物成寡聚物,最终形成不溶于细胞外的淀粉样蛋白纤维纤维细胞。均具有细胞毒性的循环低聚物,以及导致组织结构变形的Fi黑色,导致器官功能障碍。淀粉样蛋白fi黑色是刚性的,非分支结构,直径为7至10纳米米,在电子显微镜上具有特征性的外观。对刚果红色染色的亲密关系,与β式的床单结合,当在极化光学显微镜下进行视觉时,会产生病理学的“苹果绿”双折射。均与所有淀粉样蛋白fi的普遍是伴侣蛋白,例如血清淀粉样蛋白P(SAP)和糖胺聚糖以及钙。有30多种不同的前体蛋白与各种淀粉样蛋白有关,这些淀粉样蛋白是遗传性或非遗传性,局部或全身性的,具有不同的器官受累和预后。1–3
糖胺聚糖(GAG)是细胞表面和细胞外基质的重要组成部分,在该基质中,它们通过与各种蛋白质的相互作用而参与了几个细胞过程。为成功的组织再生,以类似方式开发出适当的矩阵支持细胞的生物学活性,仍然具有挑战性。在这种情况下,本研究旨在设计一种热敏性多糖,该多糖可以进一步用作组织工程应用的水凝胶。为此,将具有GAG模拟特性的海洋细菌外多糖(EPS)与热敏感聚合物,聚(N-异丙基丙烯酰胺)(PNIPAM)接枝。通过不同的EPS/PNIPAM摩尔比和PNIPAM的分子量获得了八种接枝多糖。使用多技术,实验方法确定其物理化学特征及其热敏性能。并行,分子动力学和蒙特卡洛模拟在两个不同的尺度上分别阐明,分别阐明了接枝地狱链的分子构象,以及它们在Percolation附近的Sol-gel Transcolation中形成无限网络的能力,这是水凝胶形成中必要的条件。从这项研究中提出,热敏化地狱已成功开发,并且将进一步评估其在组织再生中作为水凝胶支架的潜在用途。
天然肝素是一种糖胺聚糖,是由1→4糖苷键连接的重复己酸酯和葡萄糖胺组成的,是使用最广泛使用的抗蛋白剂。为了颠覆对动物的肝素的依赖性,生产肝素糖的替代方法,即类似于天然肝素的异质糖链或结构定义的寡糖,正在成为热对象。尽管五糖的化学合成成功,但Fonda Parinux鼓励通过产生同质产物的化学方法进行,合成较大的寡寡糖仍然很麻烦,到目前为止无法实现。另外,化学酶途径表现出对修饰的糖基化和区域选择性的精致立体选择性,从而跳过了化学合成中不可避免的繁琐的保护步骤。但是,今天所需的药物生产规模仍然不远。相比,生物体中从头生物合成的程序可能是一个最终目标。这篇评论的主要目的是总结当前的可用/开发策略和技术,预计该策略和技术将为生产肝素糖的生产提供全面的图片,以补充或最终取代动物衍生产品。在化学和化学酶方法中,根据合成程序讨论了方法:构建块制备,链伸长和骨干修饰。
摘要:背景:I型I型Hurler(MPS1-H)是由于IDUA基因的功能丧失突变而导致的严重遗传溶酶体储存障碍。随后的α -iduronidase酶的完全缺乏率直接导致溶酶体中糖胺聚糖(GAG)的进行性积累,从而影响许多组织的功能。因此,MPS1的特征是系统性症状(多器官功能障碍),包括呼吸道和心脏功能障碍,骨骼异常和早期致命神经变性。方法:为了了解MPS1神经病理学的基础机制,我们从两个IDUA等位基因的MPS1-H患者中产生了诱导的多能干细胞(IPSC)。为了避免因IPSC的不同遗传背景而导致的可变性,我们通过通过慢虫方法挽救IDUA表达来建立了IPENIC Control IPSC线。结果:在神经差异后观察到MPS1 -H和IDUA校正的同基因对照之间的明显差异。刮擦测定法显示了MPS1-H细胞的强迁移缺陷。此外,IDUA缺乏对基因表达的影响很大(FDR <0.05的340个基因)。结论:我们的结果表明,迄今为止,溶酶体降解,基因表达和神经运动之间的联系尚不清楚,这可能至少部分解释了MPS1-H患者的表型。