honokiol是一种天然发生的来自木兰obovata thunb。的化合物,具有许多生物学活性,但其抗α-葡萄糖苷酶活性仍然不清楚。因此,我们确定了其对α-葡萄糖苷酶的抑制作用。活性测定表明,Honokiol是α-葡萄糖苷酶的可逆混合型抑制剂,其IC 50值为317.11±12.86μMM。荧光结果表明,Honokiol与α-葡萄糖苷酶的结合导致α-葡萄糖苷酶活性的降低。3D荧光和CD光谱结果表明,Honokiol与α-葡萄糖苷酶的结合引起α-葡萄糖酶的构象变化。对接模拟了Honokiol和α-葡萄糖苷酶(包括氢和疏水键)之间的详细相互作用。所有发现都表明Honokiol可以用作开发α-葡萄糖酶剂的天然抑制剂。
α-葡萄糖苷酶(EC 3.2.1.20)是一种碳水化合物水解酶,广泛分布于小肠黏膜刷状缘,对糖基结构有重要影响。它能以内切或外切的方式水解各种糖化合物中的糖苷键,产生单糖、寡糖或糖胺聚糖,导致餐后血糖升高(Daub et al., 2020; Ismail et al., 2020; Attjioui et al., 2020)。餐后高血糖是导致2型糖尿病发生、发展的主要危险因素。抑制α-葡萄糖苷酶活性可减慢碳水化合物的消化,从而减少葡萄糖吸收入血,控制血糖水平。这种抑制被认为是治疗非胰岛素依赖型糖尿病的重要临床验证靶点(Ye et al., 2019; Khan et al., 2019; Syabana et al., 2021)。目前常用的α-葡萄糖苷酶抑制剂为阿卡波糖、伏格列波糖等生物合成或半生物合成药物,这些药物价格昂贵,且有不同程度的不良副作用(主要为腹部不适、恶心、呕吐等胃肠道反应(Wehmeier & Piepersberg, 2004; Smith et al., 2021)。需要开发安全、有效、具有临床获益的新型α-葡萄糖苷酶抑制剂。
单细胞智能是最近提出的术语,因为很明显,“生物智能”深深植根于遗传基础上。术语概念的可能应用是许多人可以通过多个基因调节网络创建特定细菌行为的一部分,其中可能涉及非编码RNA。生物智能是所有生物体中基因组单位形成的起源,无论是单细胞还是多细胞。这种智力对于地球上存在的生存是必不可少的。微生物对某些抗生素很敏感,但它们迅速获得了对这些抗生素的抗性,并且这种发展程度或适应性具有其遗传因子,其遗传因素可能是不编码的RNA或在基因组上难以辨认的。也许非编码RNA可以转移到编码RNA中,反之亦然。智力是存在于其起源的,如果它是微生物胚芽,植物药或人类或动物精子。当前的审查旨在简要阐明经典条件的遗传基础以及与非编码RNA的联系的可能性,以及是否可以应用该概念来增强抗生素灵敏度。
Gorontalo 96128 Korespestensi Penulis:nurvitaabdullah@gmail.com摘要。Garuga Floribunda(Garuga Floribunda Decne)植物是以各种药用特性而闻名的物种之一。这项研究旨在研究α-葡萄糖苷酶和α-淀粉酶的抑制活性,并确定Garuga Floribunda叶片作为抗糖尿病剂的最佳浓度。通过使用甲醇作为溶剂作为萃取过程获得叶片的提取,并使用d-硝基苯基-α-D-糖酰胺(P-NPG)对α-葡萄糖苷酶对α-葡萄糖苷酶的抑制活性进行了测试。该方法是UV-VIS分光光度法。该植物的植物化学测试揭示了类黄酮,生物碱,皂苷,单宁,类固醇和萜类化合物的存在。抑制测试结果表明,Garuga Floribundaleaves的甲醇提取物对这两种酶表现出显着的抑制活性。对α-葡萄糖苷酶的最高抑制百分比为91.09%,表明抗糖尿病活性很高。同时,对α-淀粉酶的抑制作用为7.56%,没有明显的抗糖尿病活性。抑制两种酶的最佳浓度为1000 ppm。关键词:跳蚤,抑制,酶,抗糖尿病abtrak。Tumbuhan Buhu(Garuga Floribunda Decne)Merupakan Salah Satu Spesies Tumbuhan Dengan Beberapa Khasiat Obat。metode yang digunakan adalah metode spektrofotometer uv-vis。kata kunci:buhu,inhibisi,enzim,抗糖尿病这项研究的目的是研究α-葡萄糖苷酶和α-淀粉酶的抑制活性,并找出Buhu叶甲醇提取物作为抗糖尿病的最佳浓度。buhu叶提取物是通过使用甲醇溶剂提取的过程获得的,其抑制活性使用dNS-DNS substrate(3-氨基酯(3-二氨酸)(3-二氨酸)(3-氨基型)(使用α-氨基酶),使用p-硝基苯基D-D-D-D-D-D-丙氨酸酶(P-NPG)底酸(P-NPG)底物测试。植物化学测试包括类黄酮化合物,生物碱,皂苷,单宁,类固醇和萜类化合物。抑制测试的结果表明,布胡叶的甲醇提取物对两种酶具有显着的抑制活性。抑制α-葡萄糖苷酶的最高百分比为91.09±1.52 ppm,分为抗糖尿病非常活跃。对于α-淀粉酶5.33±0.79 ppm,不活跃为抗糖尿病。
被称为“延伸药”,“生物可逆的衍生物”和“同源物”。5,6自1970年代初以来,这种方法已改善了癌症药物治疗。7通常由药物和一个与形成非活性底物相关的化学部分组成。用特定的生物学培养基(例如阿司匹林)或以更具针对性的方式激活后,通过进行特定的生化转化的酶,在体内释放活性药物以释放活性药物以发挥其治疗作用。碳水化合物是在体内发现的最丰富的大莫尔 - cule,并且在许多细胞相互作用(例如信号传导或细胞表面受体)中起关键作用。8由于癌细胞的快速增殖,存在高能需求。发现在癌细胞中过表达的葡萄糖转运蛋白(GLUTS),通过比正常细胞更高的葡萄糖增加葡萄糖的摄取来解决问题,这一现象称为“ warburg ectect factect”。9,这种影响受到科学界的关注,以设计和开发基于糖的靶向药物输送。10也已广泛报道说,各种糖苷酶在不同的癌症类型中过表达(见表1)。例如,在包括乳腺癌,11胃12和肝脏在内的许多癌症中,B-葡萄糖苷酶在许多癌症中被上调。13可以通过使用糖苷酶激活的前药来利用这种过表达来靶向许多不同的癌症。绝大多数基于碳水化合物的前药旨在改善药代动力学特性。,(图它们在水,低毒性和高生物相容性中表现出很高的溶解度。已经显示出几种细胞毒性剂,例如Glufosf- amide,Chlorambucil,Docetaxel,3-Paclitaxel等1)已被糖基化,发现对非癌细胞的毒性比亲本aglycons毒性小。35个肿瘤相关的碳水化合物抗原(TACA)是特定靶标,因此也被认为是癌症检测的良好生物标志物。它们对于基于碳水化的癌症疫苗至关重要,以改善免疫学
摘要:世界人口和资源稀缺的增加导致引入了环境概念,例如可持续性和可持续供应链设计(SSCD)。但是,研究人员在如何衡量SSCD中的可持续性方面缺乏共识。因此,作者提出了一种新颖的方法,通过开发一个综合,可拖动和代表性的指标框架来衡量SSCD的可持续性。方法论涉及书目检查和统计技术的定量方法。首先,作者通过制定研究问题和搜索协议,搜索相关文章,并对全文评论进行了质量评估,从而获得了系统文献综述,以获取从文献中衡量SSCD可持续性的指标。然后,他们通过合并相关指标来定义代表其包容关系的聚合标准。作者随后使用集群分析(CA)(一种多元统计技术)来分组指标。因此,将十二个集群与541篇研究文章区分开,分组来自不同可持续性维度的51个指标。它显示了可持续性维度之间的密切联系,即必须对它们进行整体评估。然后,我们提议将51个指标减少到5,以评估SSCD中的可持续性,从而使我们专注于减少的指标。
摘要:基于微生物的易于培养及其短周期,微生物起源的α-葡萄糖苷酶抑制剂(α -GIS)的研究引起了广泛的关注。用于粮食生产中的原材料,例如谷物,乳制品,水果和蔬菜,包含各种生物活性成分,例如霉菌,多酚和生物碱。用特异性细菌菌株发酵增强了这些原材料的营养价值,并可以创建富含不同活性成分的降糖产品。此外,常规食品加工通常会导致显着的副产品产生,从而导致资源浪费和环境问题。然而,使用细菌菌株发酵这些副产品成α -GIS提出了一种创新的溶液。本综述描述了已鉴定的微生物衍生的α -GI。此外,总结了使用工业食品原材料和加工副产品作为发酵培养物的生产。值得分析菌株和原材料的选择,关键化合物的分离和识别以及发酵肉汤研究方法。值得注意的是,也描述了这个领域中的创新思想。本综述将为微生物衍生的降血糖食品的发展提供理论指导。
肠气肿 (PI),也称为肠囊状气肿,被归类为一种胃肠道疾病,描述肠道内气体的积聚,由 Du Vernoi 于 1783 年首次记录,是理解胃肠道病理学的一个重要里程碑 ( 1 )。PI 被认为是一种罕见疾病,据报道在普通人群中的发病率约为 0.03% ( 2 )。PI 的分类可分为两种主要类型:特发性类型,约占病例的 15%,其特征是存在囊性气穴,表明病因是慢性、良性特发性的;继发性类型约占 85%,其特征是因多种诱因导致的线状、微泡状或环状壁内气体的特定放射学表现 ( 3 , 4 )。作为一类降血糖药,α 葡萄糖苷酶抑制剂 (a GI) 是治疗 2 型糖尿病的常用处方药,它通过拮抗作用延缓小肠对碳水化合物的吸收,或通过拮抗 α-葡萄糖苷酶的剂量依赖性抑制作用延缓小肠对水合物的吸收,从而非系统性地减缓碳水化合物的消化并降低餐后高血糖 ( 5 )。然而,使用 GI 通常会引起胃肠道副作用,这是最常见的报告不良反应,包括腹痛、腹胀和腹泻等症状 ( 6 , 7 )。这些胃肠道副作用是一些 2 型糖尿病患者停止 GI 治疗的主要原因 (8)。有趣的是,PI 已被认为是使用 GI 治疗糖尿病的一种罕见副作用,最近的一项研究利用美国食品和药物管理局不良事件报告系统的数据来识别表明 GI 和 PI 之间存在显著关联的安全信号,揭示了 GI 中 PI 的报告比值比明显较高,特别是伏格列波糖和米格列醇,而其他抗高血糖药物类别未检测到安全信号,从而强调了富含碳水化合物饮食的患者使用 GI 可能带来的生命危险 (9)。过去十年中也出现了一些病例报告记录了这种关联。例如,S. Tanabe 等人成功治疗了一名因使用 GI 而出现气腹的患者,强调了这种药物的潜在并发症 (10)。同样,A. Rottenstreich 等人报道了一例罕见的良性 PI 病例,伴有门静脉气体和气腹,具体诱发因素是药物阿卡波糖 ( 11 )。此外,A. Police 等人发表了一份病例报告,详细介绍了糖尿病患者乙状结肠扭转时胃肠道诱发的 PI ( 12 )。值得注意的是,S.Otsuka 等人描述了一名 59 岁的肺移植接受者,他在使用 α-葡萄糖苷酶抑制剂治疗糖尿病四年后出现了无症状 PI,这强调了医生需要认识到这种罕见的药物不良反应,以及立即停止胃肠道治疗并随后对此类患者进行保守治疗的重要性(13)。这些病例强调了临床医生有必要加强
我们报告了一系列适用于检测和克隆翻译控制信号和外源基因 5' 编码序列的质粒载体的构建和使用。在这些质粒中,乳糖操纵子 β-半乳糖苷酶基因 lacZ 的氨基末端的前八个密码子被去除,并在 lacZ 的第八个密码子附近插入独特的 BamHI、EcoRI 和 SmaI (XmaI) 内切酶切割位点。将含有适当调节信号和 5' 编码序列的脱氧核糖核酸片段引入此类 lac 融合质粒导致产生由 β-半乳糖苷酶残基的羧基末端片段和含有外源脱氧核糖核酸序列编码的氨基末端氨基酸的肽片段组成的混合蛋白。这些杂合肽保留了 1,8-半乳糖苷酶的酶活性,并产生了 Lac' 表型。此类杂合蛋白可用于纯化由外源脱氧核糖核酸片段编码的肽序列,以及用于研究特定肽片段的结构和功能。