背景:1型糖尿病(T1DM)是一种慢性自身免疫性条件,由于氧化应激和代谢失调,可能导致长期并发症。二氧酶-1(PON-1)是一种与高密度脂蛋白(HDL)相关的酶,具有双重活性:芳基酯酶和乳糖酶。这些活动可保护脂质免受氧化损伤。T1DM儿童中PON-1的功能状态可以提供有关氧化应激与酶保护作用之间关系的见解。本研究旨在评估伊拉克T1DM儿童中PON-1的芳基酯酶和乳糖酶活性。方法:招募了67名T1DM的儿童,并与57个年龄匹配的健康对照组进行了比较。测量芳基酶和lactonase的酶促活性以评估PON-1的功能状态。计算二氧化氧酶-1/HDL(PON/HDL)比例以评估脂质保护和抗氧化能力。氧化状态。结果:PON-1活性分析显示,患者组的芳基酶(2.36±1.17)和乳糖酶(21.9±7.31)显着降低,与对照组相比(芳基酶= 4.54±1.84,lactonase = 29.51±9.92)。TOS和OSI明显更高,而患者组的TA则显着降低。Pearson相关性显示HDL-C和芳基酶之间存在正相关(P = 0.002,r = 0.379),HDL-C和LACTONAPE(P = 0.040,r = 0.366)。结论:降低的PON-1活性与T1DM有关,表明增强PON-1或减少氧化应激可能有助于预防糖尿病并发症并改善心血管健康。关键字:抗氧化活性,二氧化烷酶-1,芳基酶,乳糖酶,氧化损伤,I型糖尿病。
汽油范围碳氢化合物 (GRH) 有两种:汽油范围 GRH 和柴油范围 GRH。DRH (PHC) 包括多环芳烃和长链烷烃等。GRH 包括甲苯、苯、二甲苯和乙苯等碳氢化合物 [3]。糖苷水解酶(称为木聚糖酶 (EC 3.2.1.x))可催化木聚糖中 1,4-D-木糖苷键的内水解。包括细菌、藻类、真菌、原生动物、腹足类和人足类在内的多种生物都会产生这种普遍存在的酶组,这些酶参与木糖的形成(木糖是细胞代谢的关键碳源)以及植物病原体对植物细胞的感染 [4]。木聚糖是自然界中第二常见的多糖,是植物细胞的主要结构成分,约占整个地球可再生有机碳的三分之一。半纤维素、木葡聚糖、葡甘露聚糖、半乳葡甘露聚糖和阿拉伯半乳聚糖的主要成分是木聚糖 [4, 5]。在酿造过程中,木聚糖酶可以提高麦芽汁的过滤性并减少最终产品的浑浊度。它们还可用于咖啡提取和速溶咖啡的制备、洗涤剂、植物细胞的原生质体化、生产用作抗菌剂或抗氧化剂的药理活性多糖,以及生产用作表面活性剂的烷基糖苷 [6]。
本文讨论了乳糖酶在各种情况下的作用、可产生乳糖酶的微生物来源、乳糖酶发酵中使用的底物类型、有效的发酵策略以及乳糖酶的工业应用。细菌、酵母和真菌用于生产乳糖酶,乳糖酶是一种分解牛奶中乳糖的酶,本文探讨了稻草和橘皮等非常规底物,展示了它们在经济高效的酶生产中的潜力。本文解释了不同的发酵策略,包括深层发酵和固态发酵,强调了它们在最大化乳糖酶产量方面的有效性。纯化和提取技术对于提高酶的纯度和效率也很重要。乳糖酶用于各种工业应用,包括牛奶中的乳糖水解、半乳寡糖的产生以及乳糖不耐症的治疗。乳糖酶在食品和制药行业具有众多优势,固定化技术和基因工程的进步可以显著提高酶的生产效率。
总结2型糖尿病的患病率(T2D)在世界范围内不断增加,与肥胖的同样增加,并且正在引起年轻患者的同样增加。只有少数T2D患者达到血糖靶标,这表明对新型抗糖尿病药物的需求显然不仅需要控制血糖,而且还需要停止或减慢β-细胞的进行性逐渐丧失。最近已批准了两种全新的抗糖尿病剂 - 葡萄糖激酶激活剂和iMeglimin,将成为这项综述的主题。葡萄糖酶的变构活化剂是一种口服低分子重量药物,是β细胞中刺激胰岛素分泌和抑制肝葡萄糖产生的酶。其中一种是多扎利汀,在中国批准用于T2D的成年患者,无论是单一疗法还是二甲双胍的附加组件。多年来,该药物是否会产生持续的抗糖尿病作用,以及导致终止候选药物的副作用是否会限制多兰氏蛋白酶的有用性。imeglimin(与二甲双胍具有结构性相似),涉及线粒体功能障碍,并在日本批准了针对T2D的批准。在临床前研究中,该药物还显示出有希望的β细胞保护性和防腐剂作用,这些作用可能转化为疾病改变作用。希望,这两个新移民将有助于满足新治疗方式的巨大医疗需求,最好以改善疾病的潜力。还有待观察,它们将适合当代治疗算法,这些算法的结合是有效的,应避免。时间将在何种程度上说明这些新的抗糖尿病药物将在持续的抗糖尿病效果,可接受的安全性,联合治疗中的效用以及对硬性终点(如心血管疾病)的影响方面为当前针对T2D的治疗方案增加价值。
该公司根据医疗保险和医疗补助服务中心(CMS)法规和指导,福利计划文件和合同以及成员的病史和状况做出覆盖范围。如果CMS没有解决服务的职位,则该公司根据公司政策公告做出决定。收益可能会根据合同而有所不同,必须验证个人会员福利。公司仅在福利存在并且不适用合同排除的情况下才能确定医疗需求。尽管Medicare Advantage政策公告与Medicare的法规和指导一致,但公司的支付方法可能与Medicare不同。当可以在各种环境中管理服务时,该公司保留仅在适合成员的医疗需求和状况的最合适和成本效益的设置中提供的那些服务的权利。该决定基于成员当前的医疗状况以及可能与此服务交付相一致的任何要求的监控或其他服务。本政策公告文件描述了开发文件时的CMS覆盖范围,医疗术语和/或福利计划文件和合同的状态。该政策公告将定期审查,并随着Medicare更改其法规和指导,科学和医学文献的可用和/或福利计划文件和/或合同的更改。
1微生物学和生物医学研究所ACoruña(Inibic),大学医院ACoruña,Coruña,Coruña,西班牙2分子类型参考实验室,并检测Andalusia(Pyrasoa)的抗菌耐药机制。 div>微生物学和传染病的临床管理部门,塞维利亚Virgen Macarena大学医院。 div>西班牙塞维利亚大学塞维利亚生物医学研究所(IBIS),西班牙塞维利亚大学3研究与研究实验室,研究与抗生素和感染的研究实验室和研究,与卫生援助有关马洛卡(Mallorca
摘要:由于发现青霉素,β -lactam抗生素通常用于治疗细菌感染。不幸的是,与此同时,病原体可以通过产生β-乳糖酶来发展对β-乳酰胺抗生素的抗性,例如青霉素,头孢菌素,单oc省和碳青霉烯。因此,将β -LACTAM抗生素与β-内酰胺酶抑制剂的组合是控制β-lactActam抗性细菌的一种有希望的方法。新型β-乳糖酶抑制剂(BLI)的发现对于有效治疗抗生素耐药细菌感染至关重要。因此,这篇综述讨论了旨在增强β-lactam抗生素活性的创新抑制剂的发展。具体而言,本综述描述了不同类别的β-乳糖酶的分类和特征以及β-乳酰胺和BLI的协同机制。此外,我们还引入了化合物的潜在来源,以用作新型BLIS。这为克服β-乳糖果酶产生细菌的当前挑战提供了见解,并与BLI结合设计有效的治疗选择。
对大多数临床使用的β -lactam抗生素的细菌耐药性是一种全球健康威胁,并且,依次将金属β-乳糖酶(MBL)抑制剂的发展驱动力。新MBLS的快速发展需要新的策略和抑制剂开发工具。在这项研究中,我们设计并开发了一系列三氟甲基化的Capteropril类似物作为酶抑制剂结合的结构研究的探针。新化合物的活性与针对新德里的非氟化抑制剂相当。最活跃的化合物是D-Captopril的衍生物,表现出0.3μM的IC 50值M。几种化合物表现出协同作用,恢复了MeropeNem的效果,并降低了NDM-1中的最小抑制浓度(MIC)值(MIC)值(MIC)(MIC)(最高64倍),vim-2(最高为8基)和IMPCHRI和8-FORSERIIA(至8-FORCHIA)(至8-FORCERIA)(至8-foldice),至8倍。NMR光谱和分子对接确定了NDM-1中的结合姿势,表明抑制剂的氟化类似物是MBL抑制剂复合物结构研究的有价值工具。
摘要:在治疗2型糖尿病(T2DM)方面,实现血糖控制和维持功能性胰腺β细胞活性仍然是未满足的医学需求。葡萄糖酶激活剂(GKAS)构成了一类抗糖尿病药物,旨在调节血糖水平并增强糖尿病患者的β细胞功能。正在进行GKA开发的重大进展,以解决早期几代的局限性。div> dorzagliatin靶向肝脏和胰腺,并成功完成了两项III期试验,在糖尿病治疗中表现出了良好的结果。肝选择性GKA TTP399成为强有力的竞争者,表现出临床上值得注意的结果,其不良反应最小。本文旨在回顾当前的文献,深入研究这些新一代GKA的作用机理,并根据已发表的临床前研究和最新临床试验评估其在治疗T2DM方面的功效和安全性。