在过去几十年中,含丁质废物的利用已成为一项紧迫的任务。当前的工作旨在研究壳聚糖(主要几壳蛋白成分之一)用于制备磁性可分离的生物催化剂。合成了基于固定在Fe 3 O 4纳米颗粒上的葡萄糖氧化酶(GOX)的多组分生物催化剂,合成了用壳聚糖和三聚磷酸钠修饰的纳米颗粒。用1-乙基-3-(3-二甲基氨基丙基)碳化二酰亚胺盐酸(EDC)和N-羟基糖糖酰亚胺(NHS)预先激活GOX的羧基。傅立叶转换红外光谱和低温氮的物理吸附被证明成功地修饰了磁性可分离的支撑物,并用细壳聚糖层成功。还确认了在支撑表面上的目标官能团的存在。在D-葡萄糖对D-葡萄糖 - δ-乳酮的氧化反应中研究了生物催化剂的活性和稳定性。固定的生物催化剂的活性略低于天然酶的活性。然而,固定的酶可以通过外部磁体轻松地与反应混合物分离,并实际上重复使用而不会丧失活性。确定了提供最大活性和稳定性的生物催化剂成分的比率。已经表明,与天然酶相比,通过上述方法固定GOX会导致pH和温度的工作范围增加15-20%。合成的生物催化剂可用于产生葡萄糖酸并确定各种流体中D-葡萄糖的浓度。
背景:先天性心脏病(CHD)通常与营养不良和未能繁殖有关。目标:评估心脏手术后CHD儿童的营养状况和生长模式。患者和方法:包括以下冠心病:心室间隔缺陷(VSD),心房间隔缺陷(ASD),发育不良左心综合征(HLHS),法洛(TOF)四部曲(TOF)或大动脉(DTGA)的转化。所有患者均受过病史,检查,实验室检查,放射学发现和动脉氧饱和度的约束。结果:女性为47.1%。另外,有79.4%的丙糖酸冠状动脉chd和20.6%为氰基冠心病。与患者的体重,长度,BMI相比,氰基cyanotic患者的统计学显着差异。我们的研究发现,有7.4%的抗糖毒素病例和42.8%的氰基CHD病例患有严重的营养不良,1.9%的丙氨酸冠心病病例和35.7%的氰基chd病例患有中等营养不良的病例。从统计学上讲,关于丙糖chd和Cyanotic CHD,营养状况存在显着差异。在我们的研究中,有79.4%的人没有临床心力衰竭。我们的冠心病病例中约有13.2%的心力衰竭,4.4%的心力衰竭,2.9%的心力衰竭患有严重的心力衰竭。最常见的CHD是Arteriosus专利导管32.4%,较不常见的5.9%是心室室里5.9%。关键词:先天性心脏病,营养,儿童结论:冠心病儿童的营养不良是一个主要问题,因为与术前热量数据相比,这些儿童的营养不良率很高。
缩写:%,百分比; 4E-BP1,真核翻译起始因子4E结合蛋白; Akt,蛋白激酶B; B-CHP,胶原蛋白杂交肽; CD31,分化簇31; CER,神经酰胺;蛤,哥伦布仪器综合实验室动物监测系统; CM,文化媒体; Col-IV,胶原蛋白IV; CSA,横截面区域; dag,二甘油二酸酯; DAPI,4',6-Diamidino-2-苯基吲哚; ERK1/2,细胞外信号调节的激酶1/2; E-WAT,附子脂肪垫; FBXO32,F-box蛋白32; foxo3a,叉子盒O3; GTT,葡萄糖耐量测试; H,小时; H&E,苏木精和曙红; HOMA-IR,胰岛素抵抗的稳态模型评估; HSL,激素敏感脂肪酶;如果,免疫荧光; IL-6,白介素6; i-wat,腹股沟脂肪垫;最小,分钟; MTOR,雷帕霉素的机械靶标; Musa1,F-box蛋白30; MyHC,肌球蛋白重链; NMR,核磁共振; OCT,最佳切割温度化合物; p/t,磷酸化; PAX7,配对盒蛋白PAX-7; PGC-1α,过氧化物酶体增殖物激活的受体 - 伽马共振剂1α; QPCR,实时聚合酶链反应; RER,呼吸道交换比; RNA,核糖酸; RPS6K,核糖体结合蛋白S6激酶B1;标签,甘油三酸酯; TRAF6,肿瘤坏死因子受体相关因子6; USP,美国药品; VCO 2,二氧化碳生产; VO 2,消耗氧。
摘要:人类唾液 - 酸性结合免疫球蛋白样凝集素-9(SIGLEC-9)是在几个免疫细胞上表达的糖免疫检查点受体。SIGLEC-9与含糖酸(唾液聚糖)的唾液酸的结合已充分记录,以调节其作为抑制受体的功能。在这里,我们首先使用良好的三维核磁共振(NMR)方法分配了SIGLEC-9 V-SET结构域(Siglec-9 D1)的氨基酸骨架。然后,我们将溶液NMR和分子动力学模拟方法结合在一起,以解释Siglec-9与天然配体α2,3和α2,62,6 siAllyl乳糖胺(SLN)(SLN)(SAIALYL LEWIS X(SALEX)(SALEX)和6-O硫的分子细节,并与两个固定型结合,并将其与两个固定型结合。正如预期的那样,在规范的唾液酸结合位点的F和Gβ链之间容纳了neu5ac。在NEU5AC的C9位置添加杂型支架9 N -5-(2-甲基噻唑-4-基)噻吩磺酰胺(MTTS)会产生与位于Siglec-9的N-末端区域的疏水性残基的新相互作用。同样,在neu5ac的C5位置添加芳族取代基(5- n-(1-二苯基 - 1 H-1 H- 1,2,3-三唑-4-基)甲基(BTC))稳定在SigleC-9中存在长长的B'-c loop的构象。这些结果暴露了负责SIGLEC-9对这两个改良的唾液聚糖的增强的亲和力和特异性的基本机制,并阐明了针对Siglec-9的下一代修改后的Sialoglycans的合理设计。■简介
摘要:由于牛奶乳清是一种丰富的乳制品副产品,并且对环境有重大威胁,因此其利用引起了极大的兴趣。这项研究比较了乳糖和乳酸(通过发酵)的乳糖和乳酸的价值(乳清的主要碳来源)。食品级细菌在发酵过程中释放的抗菌作用可以帮助提高食物的微生物安全性。丙酸 - 一种强的抗菌剂 - 主要是通过石化途径获得的,但对其在生物技术途径中的合成越来越兴趣。五株丙酸细菌(酸性核酸杆菌,酸性杆菌,环己丙己省丙糖酸,弗洛德尼丙肽杆菌,酸性核酸杆菌,Jensenii酸性杆菌,Jensenii和使用酸性的酸性酸杆菌的能力),并产生了酸性的酸性,并产生了有机酸酯的能力。碳源。在用食源性病原体研究期间,研究了选定的发酵液的抗菌效率:大肠杆菌,克雷伯氏菌肺炎,铜绿假单胞菌,铜绿假单胞菌,枯草芽孢杆菌,枯草菌和葡萄球菌aureus。结果证实,酸和生物量的产生对添加的碳源影响很大。测试的发酵液具有针对铜绿假单胞菌,枯草芽孢杆菌和金黄色葡萄球菌的强大抗小体活性。此外,抑制金黄色葡萄球菌和肺炎肺炎的抑制取决于产生的细菌素的活性。本文还讨论了通过酸性提高发酵物抗菌活性的可能性。
参考文献•SUR,小R,Tyranty V,Zeviani M. mtDNA的耗竭。mithochochondria。2007年2月-APR; 7:6-1 doi:10.1016/j.mit.2006.11.010.Epub 2006。Carrozzo R,C的自由,MC,Rizzi S,Rizzi C,C,Pyonse F,Rodenburg R,Santer R,Holy FM,Var Row A,Var Row A,Conting,Morava E,Wevers Ra。sucla2突变与英里甲基乳腺癌大脑。 2007年度; 130(pt 3):862-74。 doi:10.1093/awl3 Epub 2007 Pones 14。 PubMed上的引用(https://pubmed.ncbi。 Carrozzo R, Verigni D, Rasmussen M, of Coo R, Neighborhood H, Bianchi M, Messia S, Naess K, AP Born, Woldeth B, Pronunciation of P, Batbayli M, Ravn K, Joensen F, Joensen DM, Santorelli FM, Tulinius M, Nantes N, Duno M, Burlina A, Stangon G, Bertini E, Redonnet-Vernhet I,Wibrand F,Osterga-Vici E. Sucla2和Suclg j继承的metab di。 2016年3月; 39(2):243-5 doi:10.1007/s1054-015-9894-9 EPUB 2015年10月16日。 •在Hattab AW中,Scachlia F.酸尿症。 2009年5月26日[更新2023年9月28日]。 epub大脑。2007年度; 130(pt 3):862-74。 doi:10.1093/awl3Epub 2007 Pones 14。PubMed上的引用(https://pubmed.ncbi。Carrozzo R, Verigni D, Rasmussen M, of Coo R, Neighborhood H, Bianchi M, Messia S, Naess K, AP Born, Woldeth B, Pronunciation of P, Batbayli M, Ravn K, Joensen F, Joensen DM, Santorelli FM, Tulinius M, Nantes N, Duno M, Burlina A, Stangon G, Bertini E, Redonnet-Vernhet I,Wibrand F,Osterga-Vici E. Sucla2和Suclgj继承的metab di。2016年3月; 39(2):243-5 doi:10.1007/s1054-015-9894-9EPUB 2015年10月16日。•在Hattab AW中,Scachlia F.酸尿症。2009年5月26日[更新2023年9月28日]。epubin:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,编辑。genereviews(r)[Internet]。西雅图(WA):西雅图华盛顿大学; 1993-2025。 Available fromhttp://www.ncbi.nlm.nih.gov/books/NBK6803/ Citation on PubMed (https://www.ncbi.nlm.nih.gov/pubmed/20301762) • Elpeleg O, Miller C, Hershkovitz E, Bitner-Glindzicz M, Bondi-Rubinstein G,Rahman S,Pagamenta A,Eshhar S,Saada A. ADP型糖酸核酸-COA合酶活性的缺乏与脑病和蒙脱石软骨DNA耗竭有关。 Am J Hum Genet。 2005 Jun; 76(6):1081-6。 doi:10.1086/430843。西雅图(WA):西雅图华盛顿大学; 1993-2025。Available fromhttp://www.ncbi.nlm.nih.gov/books/NBK6803/ Citation on PubMed (https://www.ncbi.nlm.nih.gov/pubmed/20301762) • Elpeleg O, Miller C, Hershkovitz E, Bitner-Glindzicz M, Bondi-Rubinstein G,Rahman S,Pagamenta A,Eshhar S,Saada A.ADP型糖酸核酸-COA合酶活性的缺乏与脑病和蒙脱石软骨DNA耗竭有关。Am J Hum Genet。2005 Jun; 76(6):1081-6。 doi:10.1086/430843。2005 Jun; 76(6):1081-6。 doi:10.1086/430843。
Felix Zoiku,Ameyaw Prince,Agyekum Boateng,Prince Fordjour,Nana Aba Ennuson,Malvin Forson,Mina Ansomaa,Sena Matrevi,Donkor王子,Nancy Duah-Quashie和Neils Quashie and Neils Quashie doi:Quashie doi:: https://doi.org/10.22271/tpi.2024.v13.i2c.25380摘要这项研究探索了当地加纳海藻在生产琼脂糖中的潜力,生产琼脂糖的进口琼脂糖的替代品,用于DNA片段分离中的凝胶电泳。从KPONE和LABADI收集的Gracilaria cervicornis和Hydropuntia dentata等海藻进行处理,使用聚乙二醇,二乙基氨基乙基纤维素和二甲基磺氧化物等方法提取琼脂糖。这些红色藻类表现出高琼脂含量,与Hydropuntia dentata相比,颈颈治疗剂具有更好的琼脂糖,具有更好的凝胶强度和温度性能。从Ulva fasciata和Caulerpa Tastifolia中获得了琼脂。这项研究证明了局部产生的琼脂糖在脱氧核糖核酸分离中的有效性,这表明可能用于分子工作的“加纳琼脂糖”商业生产的潜力。关键字:琼脂,琼脂糖,琼脂蛋白,海藻,凝胶1。引言使用可生物降解和生物相容性材料的使用正在变成当前时代的真正必要性,这是由于不断增长的环境问题以及建立可持续的未来的全球努力。在这方面,长期以来一直在研究海藻多糖用于生产生物材料,这些生物材料涵盖了诸如食品,生物技术,药理和生物学领域的广泛行业[1]。这些海藻中的许多是可食用的,用于商业目的[3]。就像我们在加纳[5]一样。海藻沿着海洋,盐水和淡水发现,它们有各种品种;红色,绿色和棕色海洋藻类[2]。用作食物,化妆品,肥料和提取工业化学品[4]。海藻大多在中国,印度尼西亚和腓立比人群中被利用:这些国家都有水生地区,例如池塘,溪流等。然而,在加纳,没有给予这种勤奋的水生植物的关注,因此其重要性尚未得到足够的利用来经济地帮助该国[6]。Ralfsia expansa, Ulva flexuosa, Hydropuntia dentata, Hypnea musciformis, Lithothamnion bi sp orum, Ulva fasciata, Centroceras clavulatum, Ulva lactuca, Chaetomorpha linum, and Caulerpa taxifolia are the most abundant seaweed in Ghana and they all play key roles in affecting the spatial社区组织[7]。在各种海藻中,明智的种类和红色海藻的gracilaria物种故意用于制备琼脂糖,这是由于它们中发现的琼脂含量高[8]。琼脂在红色海藻的细胞壁上发现[9]。生物技术应用中使用最多的多糖是海藻化合物琼脂和琼脂糖[10]。琼脂有两个主要成分:琼脂糖和琼脂蛋白[11]。大多数琼脂是由琼脂糖组成的,是一种中性胶凝杂菌含糖。它是含有糖苷键的线性聚合物,如图1。在提取琼脂糖时,它是从海藻中直接提取的,或从琼脂中提取,该琼脂由70%琼脂糖和30%琼脂蛋白组成,但琼脂蛋白两种单糖为3,6-雄酸半乳吡喃糖和β-D-半乳糖吡喃糖,通过糖苷链接(1-4)在β-d-甲基乳糖酸之间的糖苷链接(1-4)连接在一起,在3、6-α-α-l-甲基乳糖酸之间,导致disagob and cons nocag ob,并导致了dis-3-糖的基本单位量。 3,6-氨基甲酸酯和β-D-半乳吡喃糖。采用复杂或多步纯化程序从高质量琼脂和低级琼脂糖中生产琼脂糖的许多程序和研究。
摘要:已证实重新利用的药物在体外可成功治疗高级别胶质瘤;然而,由于体外模型不能真实反映临床情况,因此其临床成功率有限。在本研究中,我们使用了两种不同的患者来源的肿瘤碎片(肿瘤核心 (TC) 和肿瘤边缘 (TM))来生成异质性、临床相关的体外模型,以评估重新利用的药物(伊立替康、匹伐他汀、双硫仑、葡萄糖酸铜、卡托普利、塞来昔布、伊曲康唑和噻氯匹定)组合是否可以成功治疗高级别胶质瘤,每种药物都针对不同的生长促进途径。为了确保我们数据的临床相关性,我们使用了来自 11 位不同患者的 TC 和 TM 样本。我们的数据表明,在 100 µ m 或更低的浓度下,所有药物组合的 LogIC 50 值均低于替莫唑胺,其中一种组合在治疗 6 天后使 5 个 TM 样本的细胞存活率降至 4% 以下,几乎根除了癌症。替莫唑胺在 14 天的测定中无法阻止肿瘤生长,而组合 1 可以阻止肿瘤生长,组合 2、3 和 4 在较高剂量下减缓了肿瘤生长。为了验证细胞毒性数据,我们使用了两种不同的测定方法,终点 MTT 和实时 IncuCyte 寿命分析,以评估组合对患者 3 的 TC 片段的细胞毒性,两种测定中的细胞存活率相当。局部施用针对高级别胶质瘤不同生长促进途径的再利用药物组合,有可能转化为临床治疗高级别胶质瘤的新型治疗策略。
缩写:AAD,衰老相关疾病;年龄,晚期糖基终产物; ap,apurinic/apyrimidinic; APE1/REF-1,apurinic/apyrimidin inononononononononononocleplease1/redox fastor-1; CM,心肌细胞; CO,一氧化碳; Copp,钴原源性; CP-312,心脏保护剂-312; CPC,心脏祖细胞; CSC,心脏干/祖细胞; CVD,心血管疾病; DHA,二十六烯酸; EC,内皮细胞; ECFC,内皮菌落形成细胞; eNOS,内皮一氧化氮合酶; EPA,二糖酸; EPC,内皮祖细胞; ESC,胚胎干细胞; Foxo,叉子盒; GPX,谷胱甘肽过氧化物酶; GRX,谷毒素; GWAS,全基因组协会研究; H 2 O 2,过氧化氢; H 2 S,硫化氢; HGPS,Hutchinson – Gilford progeria综合征; HIF-1α,缺氧诱导因子-1α; HO-1,血红素氧酶-1; I/R,缺血/再灌注; IPSC,诱导多能干细胞;线粒体电子传输链; MEF,小鼠胚胎成纤维细胞; Mi,心肌梗塞; MPTP,线粒体通透性过渡孔; NAC,N-乙酰L-半胱氨酸; NLRP3,点头样受体蛋白3;不,一氧化氮; NOX,NADPH氧化酶; NRF2,核因子红细胞2相关因子2; NRP1,Neuropilin 1; PM 2.5,颗粒物; PRX,过氧蛋白; PUFA,多不饱和脂肪酸; ROS,活性氧; SASP,与衰老相关的分泌表型; SDF-1,基质细胞衍生的因子1; SMPC,平滑肌样祖细胞;草皮,超氧化物歧化酶; SRF,血清反应因子; T-BHQ,Tert-丁基氢喹酮; TRX,TXN,硫氧还蛋白; TRXR,硫氧还蛋白还原酶; VEGF,血管内皮生长因子; VSMC,血管平滑肌细胞。
Abbreviation Definition AE adverse event AESI adverse events of special interest BLA Biologics License Application BMI body mass index CDC US Centers for Disease Control CMC Chemistry, Manufacturing, and Control CoV Coronavirus 2019-nCoV 2019 novel Coronavirus COVID-19 Coronavirus Disease 2019 DART developmental and reproductive toxicity ELISpot enzyme-linked immunospot EUA Emergency Use Authorization FDA (US) Food and Drug Administration FIH first-in-human GMC geometric mean concentration GMFR geometric mean fold-rise GMT geometric mean titer HBV hepatitis B virus HCV hepatitis C virus HIV human immunodeficiency virus IFN γ interferon gamma IgG immunoglobulin G IL-2 interleukin 2 IL-4 interleukin 4 IM intramuscular(ly) IRR illness rate ratio LLN lower limit of normal LNP lipid nanoparticle MedDRA Medical Dictional for Regulatory Activities MERS Middle East respiratory syndrome modRNA nucleoside-modified RNA NAAT nucleic acid amplification test NHP nonhuman primate P2 S P2 mutant PBMC peripheral blood mononuclear cell PCR polymerase chain reaction PK药代动力学PT首选术语RBD受体结合结构域RNA RNA核糖酸RNA-LNP RNA RNA脂质纳米颗粒SAE SAE严重不良事件SARS严重急性呼吸综合症SARS-COV-2 SARS-COV-2 SARS COTORONAVIRUS-CORONAVIRUS-2;引起covid-19的病毒S尖峰糖蛋白SMQ标准化MEDDRA查询SOC系统器官类Th1 T辅助细胞类型1 TH2 T辅助细胞类型2美国美国USP美国Pharmacopeia