●有机木糖醇:以其抗腔特性和减少蛀牙的能力而闻名。●蔓越莓提取物:可提供丰富的抗氧化剂,并支持牙龈健康。●紫色胡萝卜粉:有助于维持平衡的口服微生物组。●益生菌:有助于口服卫生和整体牙齿健康的四种活益生菌培养物。
1该指南是由符合药物评估与研究中心(CDER),食品和药物管理局的合规办公室编写的。2出于本指南的目的,“高风险药物成分”是通过历史经验,与其他药物成分相比,通过历史经验,它们的DEG或EG污染风险更高。对于简洁起见,本指南的标题并未列出所有高风险药物成分。3许多(但不是全部)高风险药物成分具有美国药房或国家配方(USP-NF)专着,其中包括对DEG和EG进行测试。USP-NF是指两种汇编,美国药房(USP)和国家配方(NF)的组合。除了确定这些产品的强度,质量和纯度的其他测试和方法外,USP-NF专着为其中列出的药物提供了身份测试。本指南标题中按名称列出的高风险药物组件的USP-NF专着包括DEG和EG限制测试作为特定识别测试的一部分。还有其他高风险药物成分,其相应的USP-NF专着包括在识别测试或杂质测试中进行DEG和EG的测试,例如山梨糖醇山梨糖素溶液,非结晶山梨糖醇溶液,聚乙烯甘油甘油和二甲基乙二醇乙二醇。FDA期望制造商确保在确定需要执行哪种测试时引用当前的USP-NF。4参见,例如,谁敦促保护儿童免受污染药物的行动,世界卫生组织,世界卫生组织,2023年1月23日,可访问https://www.who.int/news/news/news/item/23-01-01-2023-Who-Ution-action-Action-Action-Action-action-to-protect-children-from-from-from--污染物。
摘要:羟基磷灰石纳米粒子 (HApNPs) 是一种尺寸小于 100 纳米的无机材料。它们的主要特性是生物相容性,因为它们的化学成分与人体骨骼相似,因此适合在生理环境中使用。这些特性使它们成为一种有前途的甾醇衍生药物输送替代品,与传统的药物输送方法相比,具有更好的靶向性和控制释放性。在本研究中,使用化学沉淀法合成了负载胆固醇和 β-谷甾醇的 HApNPs。通过傅里叶变换红外 (FTIR) 光谱对纳米粒子 (NPs) 进行表征,以识别功能组并确认 HApNPs 上存在甾醇。使用透射电子显微镜 (TEM) 和动态光散射 (DLS) 分析了 NPs 的形态和尺寸。通过热重分析确定甾醇衍生物的负载量,并评估了纳米粒子在酸性介质中的稳定性。结果表明,成功合成了负载胆固醇和β-谷甾醇的HApNP,其呈球形,直径小于100纳米。数据证实胆固醇和β-谷甾醇已掺入HApNP表面,并且随后释放。此外,纳米生物界面中甾醇衍生物的存在增强了纳米粒子对酸性条件的抵抗力,表明它们有可能作为药物纳米载体在肠道中靶向释放,而不会在通过胃的过程中发生改变。关键词:羟基磷灰石纳米粒子、胆固醇、β-谷甾醇、界面、酸性介质。
摘要 肝糖异生增加被认为是导致非胰岛素依赖型糖尿病 (NIDDM) 患者空腹血糖升高的一个重要因素。磷酸烯醇式丙酮酸羧激酶 (GTP) (PEPCK;EC 4.1.1.32) 是一种糖异生调节酶。为了研究 PEPCK 基因表达在 NIDDM 发展中的作用,我们培育了转基因小鼠系,这些小鼠在其自身启动子的控制下表达 PEPCK 微基因。转基因小鼠血糖升高,血清胰岛素浓度较高。此外,还检测到肝糖原含量和肌肉葡萄糖转运蛋白 GLUT-4 基因表达的变化。PEPCK 基因的过度表达导致原代培养肝细胞中丙酮酸产生葡萄糖增加。当进行腹膜内葡萄糖耐量测试时,血糖水平高于正常小鼠的血糖水平。该动物模型显示肝脏葡萄糖生成率的原始改变可能导致胰岛素抵抗和 NIDDM。
作者 JM Fukuto · 2020 · 被引用 22 次 — Shinkai Y 和 Kumagai Y。硫烷硫在毒理学中的作用:一种对抗亲电应激的新型防御系统。毒理学。Sci 170:3–9,2019。67 ...
基于聚乙烯醇(PVA)的生物塑料是在日常生活中取代常规塑料的一种有前途的替代方法。PVA是具有许多优点的可生物降解聚合物,例如无毒,低成本且易于加工。8,9在印度尼西亚,生物复合塑料公司自2009年以来一直在运营。他们将生物聚合物作为生物塑料矩阵发展。中间,pt。Inter Aneka Lestari Kimia或更名为Enviplast正在开发生物聚合物,甚至将它们出口到全球的各个国家。但是,基于PVA的生物复合材料往往具有较差的机械性能。在某些温度和条件下的10,11 PVA lms可以溶于水中,因此将PVA用作复合材料非常有限,需要修改。12 PVA的性质取决于分子量和产生PVA时使用的乙酸乙烯酯的长度所用的水解程度。PVA的分子量通常为20 000 - 400 000 g mol -1。13使用天然bre在PVA矩阵中添加llers或加固可以解决PVA应用的限制。天然bres是环保材料,可以根据植物,动物和矿物质得出,具体取决于提取的来源。14天然已被用作生物复合材料的加固,适用于许多工业应用。需要15,16特殊处理才能将纤维素与植物细胞壁分离以从植物中获得天然bre。17 - 19
摘要。根据 2018 年全球癌症统计数据,结直肠癌 (CRC) 是全球第三大常见恶性肿瘤,也是第二大癌症相关死亡原因。白藜芦醇 (RSV) 是一种酚类化合物,具有抗癌功能,可对抗多种癌症,包括乳腺癌和胃癌。然而,RSV 在 CRC 中的作用和机制尚不完全清楚。本研究旨在通过进行细胞计数试剂盒-8、细胞凋亡、活性氧 (ROS) 和蛋白质印迹分析来研究 RSV 在 CRC 细胞中的抗癌作用和机制。结果表明,与对照组相比,RSV 剂量依赖性地抑制 CRC 细胞活力,并增加细胞凋亡和 ROS 水平。与对照细胞相比,RSV 处理的 CRC 细胞中 Bax、细胞色素 c、裂解胱天蛋白酶 9 和裂解胱天蛋白酶 3 的蛋白表达水平上调,而 Bcl-2 表达水平下调。结果表明,RSV 可能通过增加 ROS 释放来激活线粒体凋亡途径。本研究表明,RSV 通过调节 ROS 介导的线粒体凋亡途径对 CRC 具有抗肿瘤活性。
理由。有机物在海面积聚。在本文中,我们提供了对持续性白泡沫中溶解糖的富集进行的首次定量评估,并将这种富集与涉及植物浮游生物的9天中型体验中的9天间中型实验中的海面微层层(SSML)进行比较。方法论。游离单糖,在轻度酸水解后确定总糖,并且将寡糖/多糖成分挖掘为挖掘,因为总和单糖之间的差异。结果。总糖水贡献了很大一部分的溶解有机碳(DOC),占海水中DOC的13%,在SSML中占27%,在泡沫中占31%。中值富集因子(EFS),计算为糖的浓度相对于SSML或SSML中的钠浓度与海水的浓度比,在SSML中为1.7至6.4,泡沫中的含量为1.7至6.4。基于EFS,木糖醇,甘露醇,葡萄糖,半乳糖,甘露糖,木糖,木糖,富藻糖,鼠李糖和核糖的中位数比SSML更富集。讨论。糖的最大EFS与较高的叶绿素水平相吻合,表明在浮游植物盛开期间,海面富集糖表面富集。SSML上海泡沫中有机物的富集较高,表明表面活性有机化合物越来越丰富在持续的气泡膜表面上。这些发现有助于解释海洋有机物如何高度富集在海洋表面上的气泡产生的海洋喷雾剂中。
摘要 尽管通过多种催化策略在废弃 CO 2 的回收利用方面取得了稳步进展,但每种方法都有明显的局限性,阻碍了糖等复杂产品的生成。在本文中,我们提供了一份路线图,评估了与最先进的电化学工艺相关的可行性,这些工艺可用于将 CO 2 转化为乙醇醛和甲醛,这两者都是通过福尔马糖反应生成糖的基本成分。我们确定即使在低浓度下,乙醇醛也在糖形成过程中作为自催化引发剂发挥着关键作用,并确定甲醛生产是一个瓶颈。我们的研究证明了在化学复杂的 CO 2 电解产物流中成功进行的福尔马糖反应的化学弹性。这项工作表明,CO 2 引发的糖是快速生长和可转基因大肠杆菌的适当原料。总之,我们介绍了一个由实验证据支持的路线图,该路线图突破了 CO2 电转化可实现的产品复杂性的界限,同时将 CO2 整合到维持生命的糖中。
自锂离子电池的进步以来,已经大大提高了电池性能,降低成本和能量密度。这些进步加速了电动汽车(EV)的开发。电动汽车的安全性和有效性取决于对锂离子电池健康状况(SOH)的准确测量和预测;但是,这个过程尚不确定。在这项研究中,我们的主要目标是通过减少充电状态(SOC)估计和测量的不确定性来提高SOH估计的准确性。为了实现这一目标,我们提出了一种新型方法,该方法利用基于级的优化器(GBO)评估锂电池的SOH。GBO最小化的成本是为了选择最佳的候选者,以通过mem-ory fading遗忘因素更新SOH。我们评估了我们的方法针对四种鲁棒算法,即颗粒群优化最高方形支持矢量回归(PSO-LSSV),BCRLS-MULTIPEPIPPY加权双重加长扩展Kalman滤波(BCRLS-MWDEKF),总平方(TLS),以及近似加权的总载体(AWTLS)(awtles and ever and Square)(HEF)(ev)ev)(EV)。我们的方法始终优于替代方案,而GBO达到了最低的最大误差。在EV方案中,GBO的最大错误范围从0.65%到1.57%,平均误差范围从0.21%到0.57%。同样,在HEV场景中,GBO的最大错误范围从0.81%到3.21%,平均误差范围从0.39%到1.03%。此外,我们的方法还展示了出色的预测性能,均方根误差(MSE)的值较低(<1.8130e-04),根平方误差(RMSE)(RMSE)(<1.35%)和平均绝对百分比误差(MAPE)(MAPE)(MAPE)(<1.4)(<1.4)。