1简介1 1。1对第一门课程的评论。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 2 1。 1。 1一阶微分方程。 。 。 。 。 。 。 。 。 。 。 。 2 1。 1。 2秒阶线性微分方程。 。 。 。 。 。 6 1。 1。 3恒定系数方程。 。 。 。 。 。 。 。 。 。 。 。 。 。 7 1。 1。 4未确定系数的方法。 。 。 。 。 。 。 。 。 。 9 1。 1。 5 Cauchy-Euler方程。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 1。 2课程概述。 。 。 。 。 。 。 。1对第一门课程的评论。。。。。。。。。。。。。。。。。。。。。2 1。1。1一阶微分方程。。。。。。。。。。。。2 1。1。2秒阶线性微分方程。。。。。。6 1。1。3恒定系数方程。。。。。。。。。。。。。。7 1。1。4未确定系数的方法。。。。。。。。。。9 1。1。5 Cauchy-Euler方程。。。。。。。。。。。。。。。。。。13 1。2课程概述。。。。。。。。。。。。。。。。。。。。。。15 1。3附录:减少顺序和复杂根。。。。。。16 1。4个应用程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1。4。1个质量弹簧系统。。。。。。。。。。。。。。。。。。。。19 1。4。2简单的摆。。。。。。。。。。。。。。。。。。。20 1。4。3 LRC电路。。。。。。。。。。。。。。。。。。。。。。。。20 1。4。4曲线的正交轨迹*。。。。。。。。。。。。21 1。4。5追踪曲线*。。。。。。。。。。。。。。。。。。。。。。。22 1。5其他一阶方程*。。。。。。。。。。。。。。。。。。。27 1。5。1 Bernoulli方程*。。。。。。。。。。。。。。。。。。。。27 1。5。2 Lagrange和Clairaut方程*。。。。。。。。。。。。28 1。5。。3 riccati方程*。。。。。。。。。。。。。。。。。。。。。31个问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32
1。定义伽马辐射与物质之间相互作用的主要过程:康普顿散射,光电吸收和成对创造。2。解释相互作用横截面的概念。3。得出指数衰减法。定义衰减系数的概念。定义与不同相互作用相对应的衰减系数的组件。4。康普顿散射和光电吸收对伽马量子能量的横截面依赖性的一般形状是什么?推荐阅读:1。Krane K. S.入门核物理学。纽约:约翰·威利(John Wiley&Sons),1988年。 198 - 204,217 - 220,392 - 394。2。Lilley J.核物理:原理和应用。纽约:John Wiley&Sons,2001年。 24 - 25,136 142。3。Knoll G. F.辐射检测和测量。第三版。纽约:John Wiley&Sons,2000年。 48 - 55。
摘要:格约化算法(例如 BKZ(Block-Korkine-Zolotarev))在评估基于格的密码学的安全性方面起着核心作用。BKZ 中用于查找投影子格中最短向量的子程序可以用枚举算法实例化。枚举过程可以看作是在某些枚举树上的深度优先搜索,枚举树的节点表示系数的部分分配,对应于格点,即格基与系数的线性组合。这项工作基于 Montanaro 的量子树回溯算法,对量子格枚举的成本进行了具体的分析。更准确地说,我们在量子电路模型中给出了具体的实现。我们还展示了如何通过并行化组件来优化电路深度。基于设计的电路,我们讨论了格枚举所需的具体量子资源估计。
最小化可编程逻辑器件和专用处理器微电子器件上离散信号频率选择数字算法硬件和软件实现的硬件成本[1]。这些任务可以而且应该通过最少算术乘法运算的级联数字滤波方法和不执行算术乘法运算的多频带数字滤波(MDF)方法来解决[2],[3],[4]。最少算术乘法运算的计算级联数字滤波算法可以基于幅频特性(AFC)具有对称性的NDF、基于Walsh NDF或基于齐次和三角数字滤波器来实现[5]。没有算术乘法运算的计算MDF算法可以而且应该在低位系数的NDF基础上、在低位系数的差分数字滤波器(DDF)基础上、或在整数系数的DDF基础上实现[6],[7]。对于采样周期为 T 的 MDF 复信号 {х(nТ)},使用低通数字滤波器 (LDF) 的此类算法,仅需在 𝑛ൌ0,1,2…𝑁െ1 处添加和移位其第 n 个时间样本即可执行信号的 N 点离散傅里叶变换 (DFT) [8]。本研究的目的是比较分析离散信号的频率选择数字方法,以构建其无需算法乘法运算的算法,并确定在不执行算术乘法运算的情况下将此类方法用于离散信号的多级 DFT 的必要和充分条件 [9],[10]。该研究使用了具有最少数量的算法乘法运算的级联数字滤波算法和不执行算法乘法运算的 MDF 的计算程序 [11],[12]。此类算法的比较分析结果以及硬件和软件建模已经证明并减少了硬件
轨道空气动力学研究卫星 (SOAR) 是一项立方体卫星任务,预计于 2021 年发射,用于研究极低地球轨道 (VLEO) 上不同材料与大气流动状态之间的相互作用。提高对这些高度的气体-表面相互作用的了解以及识别可以最大限度减少阻力或改善空气动力学控制的新型材料,对于设计未来可以在低高度轨道运行的航天器非常重要。这类卫星可能更小、开发成本更低,或者可以提供改进的地球观测数据或通信链路预算和延迟。为了实现这些目标,SOAR 具有两种有效载荷:i) 一组可操纵的翼片,能够将不同的材料或表面处理暴露给具有不同入射角的迎面而来的气流,同时还提供可变的几何形状以研究空气稳定性和空气动力学控制;以及 ii) 具有飞行时间能力的离子和中性质谱仪,可以精确测量原位流动成分、密度和速度。利用精确的轨道和姿态确定信息以及测得的大气流动特性,可以研究卫星在轨道上受到的力和扭矩,并计算出气动系数的估计值。本文介绍了 SOAR 任务的科学概念和设计。描述了使用最小二乘轨道确定和自由参数拟合过程从测得的轨道、姿态和原位大气数据中恢复气动系数的方法,并估计了解析的气动系数的实验不确定度。结果表明,卫星设计和实验方法的结合能够清楚地说明阻力和升力系数随不同表面入射角的变化。阻力系数测量的最低不确定度位于约 300 公里处,而升力系数测量的不确定性随着轨道高度降低至 200 公里而提高。
2.2.FMS 性能数据库 (PDB) 98 2.3.PDB 更新 99 2.4.性能因子定义 99 2.4.1.一般 99 2.4.2.基本 FMS 性能因子 100 2.4.3.监控燃料因子 101 2.4.4.FMS 性能因子 102 2.5.基本 FMS 性能因子 102 2.5.1.一般假设 103 2.5.2.A300-600/A310 飞机 103 2.5.3.A320 “CFM” 发动机 103 2.5.4.A320 “IAE” 系列:105 2.5.5.A330 飞机 106 2.5.6.A340 飞机 107 2.6.更改性能系数的程序 108 2.6.1.A300-600/A310 飞机 109 2.6.2.A320 系列飞机 109 2.6.3.A330/A340 飞机 110 2.7.性能系数的影响 110 2.7.1.预计机上燃油量 (EFOB) 和预计着陆重量 110 2.7.2.经济速度/马赫数 111 2.7.3.特性速度 111 2.7.4.建议最大高度 (REC MAX ALT) 111 2.7.5.最佳高度 (OPT ALT) 112