摘要 进行了飞行动力学评估,以分析使用外襟翼进行滚转控制的能力。根据空客 A350 襟翼系统架构,外襟翼可以通过使用所谓的主动差动齿轮箱 (ADGB) 独立于内襟翼展开,两种不同的概念被认为可能有利于实现预期目的。在这两种概念中,为了减轻重量和降低系统复杂性,都拆除了内副翼,外襟翼与外(低速)副翼一起执行(全速)滚转控制。概念 1 包括通常的襟翼几何形状和外副翼,而概念 2 包括外襟翼,其沿翼展方向延伸了内副翼的长度。在所呈现的分析中未考虑滚转扰流板。飞行动力学评估表明,为了满足认证规范 CS-25 和操纵质量标准的要求,襟翼偏转率至少需要达到 16°/s。系统分析表明,现有 ADGB 仅能使襟翼以最大速率 0.43°/s 偏转,或略作修改后为 1.4°/s 偏转 _____________________________________________
伸手和抓握是每个人生活中必不可少的一部分,它使人能够与环境进行有意义的互动,是独立生活方式的关键。最近基于脑电图 (EEG) 的研究已经表明,可以在 EEG 中识别自然伸手和抓握动作的神经关联。然而,这些在实验室环境中获得的结果是否可以过渡到适用于家庭使用的移动 EEG 系统仍是一个问题。在当前的研究中,我们调查了是否可以使用移动 EEG 系统(即基于水的 EEG-Versatile TM 系统和干电极 EEG-Hero TM 耳机)成功识别和解码基于 EEG 的自然伸手和抓握动作的关联。此外,我们还分析了在实验室环境中获得的基于凝胶的记录(g.USBamp/g.Ladybird,黄金标准),这些记录遵循相同的实验参数。对于每个记录系统,15 名研究参与者执行了 80 次自发伸手抓取玻璃杯(手掌抓取)和勺子(侧抓取)的动作。我们的结果证实,使用这些移动系统可以成功识别基于 EEG 的伸手抓取动作的相关性。在结合运动条件和休息的单次试验多类解码方法中,我们可以证明低频时域 (LFTD) 相关性也是可解码的。根据未见测试数据计算的总平均峰值准确度,水基电极系统为 62.3%(9.2% STD),而干电极耳机达到 56.4%(8% STD)。对于凝胶基电极系统,可以达到 61.3%(8.6% STD)。为了促进和推动基于 EEG 的运动解码领域的进一步研究,以及让感兴趣的社区得出自己的结论,我们提供了 BNCI Horizon 2020 数据库 (http://bnci-horizon-2020.eu/database/data-sets) 中公开的所有数据集。
本研究旨在全面分析聊天机器人在语言教育中的应用及其促进教育发展的潜力。通过文献计量和系统方法,本研究使用 VOSviewer 识别了在语言教育中聊天机器人应用领域有影响力的作者、参考文献、组织和国家。共选择了 26 篇同行评议的出版物进行系统评价。研究结果表明,聊天机器人对语言学习有积极影响,尽管它们在促进听力和写作练习方面有限。本研究扩展了聊天机器人用于语言教育的人-组织-技术 (HOT) 契合框架,并从人、组织和技术维度讨论了阻碍学习者使用聊天机器人进行语言教育的因素。此外,作者进一步从这三个维度讨论了聊天机器人更好地应用于语言教育的建议。
本文使用能源系统建模比较了各种灵活性选项,以支持整个能源转型过程中的可再生能源整合。我们分析了新的灵活性资产,例如电力存储、热泵、现有湿式电器的需求侧响应、生活热水电锅炉和配电网扩建,以及电器和建筑改造中的节能措施。我们提出了一个开源部门耦合模型(GRIMSEL-FLEX),以从社会规划者的角度最大限度地降低瑞士电力和住宅供暖供应的能源系统总成本,包括各种类型的消费者和城市环境。我们在各种灵活性选项中找到了相关的反馈机制。首先,电锅炉比湿式电器的需求侧响应具有更大的灵活性潜力,因为到 2050 年,它们可以将存储投资减少 26% 以上(需求侧响应仅为 12%)。其次,如果热泵取代所有化石燃料供暖,则需要多 34% 的电力存储,而要完全取代所有供暖系统,则需要多 80% 的电力存储。第三,我们发现热泵、电锅炉和湿式电器的运行时间从夜间转移到中午,从而导致光伏发电部署规模扩大(住宅部门为 22%–66%)。最后,热泵部署带来的电力存储容量高度依赖于改造率。每年 1% 的改造率可以避免 86% 的存储投资,而每年 2% 的高改造率可以抵消这一投资。
本研究的目的是解释 PT Kaya Kreasi Indonesia 的供应链管理系统如何通过公司目前正在进行的服装生产面料原材料的采购和确定过程来提高公司产品质量,以及如何按时、按量获得优质原材料,直到最终产品交付给消费者。本研究采用的方法是描述性定性。使用的数据包括主要数据和次要数据。主要数据来自案例研究和研究期刊以及客观的公司数据。本研究发现,供应链管理影响 PT Kaya Kreasi Indonesia 的绩效,这涉及到供应商、制造商和消费者。PT Kaya Kreasi Indonesia 通过实施 ISO 质量保证来展示这种良好的关系,这在产品出口过程中为买家和供应商提供了信心。天气、人力资源、生产和交货延迟等几个因素是 PT Kaya Kreasi Indonesia 供应链管理的障碍。PT Kaya Kreasi Indonesia 也有几种方法来应对这些挑战。
事实证明,CRISPR/Cas9 细菌系统是多种生物体中基因操作的有力工具,但同源直接修复 (HDR) 序列替换的效率远低于随机插入/缺失创建。许多研究集中于使用双 sgRNA、细胞同步化循环和合理设计的单链寡 DNA 核苷酸 (ssODN) 递送来提高 HDR 效率。在本研究中,我们评估了这三种方法在提高 HDR 效率方面的协同作用。我们选择了 TNF α 基因 (NM_000594) 进行测试,因为它在各种生物过程和疾病中起着至关重要的作用。我们的结果首次展示了使用两个具有不对称供体设计和三重转染事件如何显著提高 HDR 效率,从不可检测的 HDR 事件提高到 39% 的 HDR 效率,并提供了一种促进 CRISPR/Cas9 介导的人类基因组编辑的新策略。此外,我们证明了可以使用 CRISPR/Cas9 方法编辑 TNF α 基因座,这是一个在未来安全地纠正每位患者的特定突变的机会。
药物不良反应 (ADR) 是药物的不良反应,会伤害患者,是药物开发中的一个重要流失原因。通过定期针对二级药理学蛋白质组筛选药物可以预测 ADR。然而,仍然缺乏关于这些脱靶蛋白质与人类 ADR 风险之间联系的定量信息。在这里,我们从两个数据来源系统分析了药物体外生物活性的测量和预测与人类不良事件 (AE) 之间的关联:来自临床试验的副作用资源 (SIDER) 和来自上市后监测的食品和药物管理局不良事件报告系统 (FAERS)。药物对给定蛋白质的体外效力与其治疗性未结合药物血浆浓度的比率用于选择最有可能与体内效应相关的蛋白质。在研究单个靶标生物活性作为 AE 预测因子时,我们发现阳性预测值与可检测到的 AE 药物比例之间存在权衡,但考虑同一 AE 的多个靶标集可以帮助识别更大比例的 AE 相关药物。在与 AE 具有统计学显著关联的 45 个靶标中,30 个包含在现有的安全靶标组中。其余 15 个靶标包括 8 个碳酸酐酶,其中 CA5B 与胆汁淤积性黄疸显著相关。我们在本研究中包含了体外生物活性与人类 AE 之间关联的完整定量数据,可用于更明智地选择安全性分析靶标。
主管博士慕尼黑大学的AliErtürk中风和痴呆研究研究所(ISD)诊所第一审查员:博士AliErtürk第二评论家:博士教授医学MarcoDüring国防日期:2020年11月25日
基因表达的抽象调节需要在启动子和增强子上对序列特异性转录因子(TFS)的联合结合。先前的研究表明,TF结合位点之间间距的改变会影响启动子和增强子活性。然而,由于自然发生的插入和删除(Indels)导致的TF间距改变的重要性尚未系统地分析。为了解决这个问题,我们首先表征了通过ChIP-Seq(Chro-Matin免疫沉淀测序)确定的人类K562细胞中73 TF的全基因组间距关系。我们发现了协作因素之间放松的间距的主要模式,其中包括45个TFS专门与其结合伴侣展示了放松的间距。接下来,我们利用了遗传多样的小鼠菌株和人个体提供的数百万个indels来研究间距改变对TF结合和局部组蛋白乙酰化的影响。这些分析表明,与直接影响TF结合位点的遗传变异相比,通常可以容忍自然存在的插入的间距改变。为了实验验证这一预测,我们在巨噬细胞系中的六个内源基因组基因座上引入了PU.1和C/EBPβ结合位点之间的合成间距改变。在这些位置,PU.1和C/EBPβ的合作结合明显,可耐受的间距的变化范围从5 bp增加到> 30 bp的降低。总的来说,这些发现对理解增强子选择的机制以及对非编码遗传变异的解释具有影响。
1波茨坦气候影响研究所,德国波茨坦莱布尼兹协会成员;德国波茨坦Potsdam大学物理与天文学研究所,电子邮件:kluge@pik-potsdam.de。2 Wittgenstein Center(IIASA,VID/OEAW,WU)国际应用系统分析研究所,奥地利Laxenburg。3 Wittgenstein Center(IIASA,VID/OEAW,WU)国际应用系统分析研究所,奥地利Laxenburg;上海上海大学亚洲人口研究所,中国。4 Wittgenstein Center(IIASA,VID/OEAW,WU)国际应用系统分析研究所,奥地利Laxenburg。5社会科学学院社会学系,香港大学香港大学;维特根斯坦中心(IIASA,沃德/OEAW,吴)国际应用系统分析研究所,奥地利拉森堡。6 Potsdam气候影响研究所,德国波茨坦莱布尼兹协会成员。6 Potsdam气候影响研究所,德国波茨坦莱布尼兹协会成员。