飞机电气化已成为21世纪的关注和发展的关注,成为了国际势头,作为一种削减民航部门的燃油消耗和排放的战略方法。通过电气化动力总成飞行演示(EPFD)项目,NASA正在与行业合作伙伴合作,以提高技术准备,应对集成挑战,并收集数据,以获取兆瓦(MW)类电气化飞机推进(EAP)系统示威者的未来标准和法规,该系统由区域性涡轮机或单次涡轮涡轮机商业运输公司使用。随着新型EAP概念的快速出现,当前的努力集中在开发评估电气化对车辆水平性能的影响的能力上。这需要在概念设计阶段进行参数建模,使用不确定性传播技术来说明EAP系统体系结构的高变异性。本文详细介绍了具有并行混合配置的大型涡轮螺旋桨飞机概念中多MW EAP系统参数变化的综合方法。主要目标是评估车辆水平的性能敏感性,例如范围和燃料燃烧量的降低,以根据近期EAP技术水平,包括特定功率,效率,效率和能量密度,包括特定功率,效率和能量密度。
摘要。人们推测临界性是神经网络动力学的一个组成部分。在临界阈值下运行需要精确的参数调整,而相应的机制仍是一个悬而未决的问题。最近的研究表明,在大脑网络中观察到的拓扑特征会产生 Griffiths 阶段,从而导致大脑活动动力学中的幂律和临界性在扩展参数区域中的运行优势。受不同意识状态的神经相关性证据越来越多的启发,我们研究了拓扑变化如何影响 Griffiths 阶段的表达。我们使用易感-感染-易感传播模型分析了模块网络中的活动衰减,发现我们可以通过改变模块内和模块间连接来控制 Griffiths 阶段的扩展。我们发现,通过调整系统参数,我们可以抵消临界行为的变化,并在网络拓扑发生变化的情况下保持稳定的临界区域。我们的研究结果揭示了结构网络属性如何影响 Griffiths 阶段的出现,以及其特征如何与已建立的拓扑网络指标相关联。我们讨论了这些发现如何有助于理解功能性脑网络的观察变化。最后,我们指出了我们的研究结果如何有助于研究疾病传播。
与小型SAT兼容的系统为4千克质量,10U体积和15W以下的功率。这将通过在Terahertz频率上工作的基于Schottky的杂尼光谱仪来解决这一问题,并在室温下以较大的瞬时带宽和高光谱分辨率进行操作。在保持最先进的性能的同时,满足所有条件的两个主要关键系统参数包括:1)混合器的配置,其外在层定义,匹配的传输线和外壳,2)本地振荡器子系统部分及其校准。表I为当前的设计工作提供了上下文。最佳记录的系统[2]和[3]使用基本平衡的混合器,分别在2 THz处使用5 MW和10-12 MW的局部振荡器功率,可舒适地由二氧化碳泵送的甲醇气体激光器提供。基本混合器的选择是合理的,因为它们在理论上可以比次谐波混合器达到更好的噪声性能[4]。但是,亚谐波拓扑通过将其工作频率降低了两个,从而放松了局部振荡器(LO)源。此配置还避免了使用宽敞的二氧化碳激光器的要求,该激光器远非满足质量/音量/功率标准,并且无法通过Schottky Local振荡器源可以轻松实现光谱可调性[5] [6]。提议的接收器利用了混合器的平面Schottky二极管,并乘以LO。
量子计算硬件的发展面临着这样的挑战:当今的量子处理器由 50-100 个量子比特组成,其运行范围已经超出了经典计算机的量子模拟范围。在本文中,我们证明,模拟经典极限可以成为一种有效的诊断工具,用于诊断量子信息硬件对混沌不稳定性的影响,从而有可能缓解这一问题。作为我们方法的试验台,我们考虑使用 transmon 量子比特处理器,这是一个计算平台,其中大量非线性量子振荡器的耦合可能会引发不稳定的混沌共振。我们发现,在具有 O(10)个 transmon 的系统中,经典和量子模拟会导致相似的稳定性指标(经典 Lyapunov 指数与量子波函数参与率)。然而,经典模拟的一大优势是它可以应用于包含多达数千个量子比特的大型系统。我们通过模拟所有当前的 IBM transmon 芯片(包括 Osprey 一代的 433 量子比特处理器以及具有 1121 个量子比特的设备(Condor 一代))展示了此经典工具箱的实用性。对于实际的系统参数,我们发现 Lyapunov 指数随系统规模而系统性地增加,这表明更大的布局需要在信息保护方面付出更多努力。
摘要:巨型单层囊泡(GUV)的产生在各种科学学科,尤其是在合成细胞的发展中起关键作用。尽管存在许多用于GUV准备的方法,但经过修改的连续液滴界面交叉封装(CDICE)方法提供了简单性和高封装效率的优势。但是,该技术的一个重要局限性是囊泡的产生,具有较大的尺寸分布,无法控制所需的尺寸范围。这提出了一个关键问题:是否可以优化修改的CDICE方法以生产具有控制尺寸分布的GUV?在这项研究中,我们检查了两个实验参数的效果:CDICE室的旋转时间(T腐)和角频率(ω)在GUV的尺寸分布中。我们的结果表明,减少角频率或旋转时间将尺寸分布转移到较大的囊泡,从而实现有效的尺寸选择。这些发现得到了物理模型的进一步支持,该模型提供了对尺寸选择基础机制的见解。这项工作表明,可以通过直接调整系统参数来控制对GUV尺寸分布的控制。微调囊泡尺寸的能力为研究人员提供了一种强大的工具,用于开发可定制的用于合成生物学和相关领域的实验系统。关键字:GUV,合成细胞,CDICE,大小选择
几乎没有站点的基塔夫连锁店有望实现Majorana零模式而没有拓扑保护,但完全非本地,这被称为穷人的主要模式。尽管已经在理论上和实验上都报告了几个签名,但在存在穷人的主要模式下,超导相关性的性质仍然未知。在本文中,我们研究了少数位点的基塔夫链,并证明它们与不同的对称性相关性,完全由基础量子数确定。尤其是,我们发现一个两个站点的基塔链链具有局部(奇数)和非局部(奇数和偶发性)对相关性,这些相关性均由系统参数旋转偏振和高度调节。有趣的是,当非局部P波对电势和电子隧道的频率相同时,奇数对的相关性在零频率上显示出不同的行为,这一效果可以由现场能量控制。由于拓扑超导体中Majorana零模式的固有空间非局部性直接连接到拓扑超导体中的固有空间非局部性,因此,这里的不同奇数配对反映了穷人的主要非局部性非局部性的主要Maporana Majorana模式,但与拓扑没有任何关系。我们的发现可以帮助理解几个位点基塔夫链中的紧急搭配。
量子密钥分布(QKD)实现了由物理定律保证的加密密钥的隔热交换。QKD广泛部署的最后剩余障碍之一是光子的地面分配中经历的很高的损失,这限制了交流方之间的距离。解决此问题的可行解决方案是避免通过光纤维完全避免光子的陆地分布,而是通过卫星链路传输它们,在卫星链路上,损失由差异主导,而不是吸收和散射。第一个专用的卫星任务证明了这种方法的可行性,尽管其安全速度相对较低。为了使QKD变得在商业上可行,未来卫星任务的设计必须集中于在较低的系统成本下实现更高的密钥利率。当前的卫星任务已经以几乎最佳的系统参数运行,这几乎没有空间来通过当前部署的技术提高关键速率。取而代之的是,从根本上讲,需要新的技术才能大大降低两个遥远各方之间的每个秘密位成本。基于纠缠的协议提供了最高级别的安全性,并通过利用基本量子相关性来提高关键率的多种途径。在此贡献中,我们审查了可在自由空间链接上实现的基于纠缠的QKD方面的最相关进展,从而可以从轨道上分配安全密钥。众所周知,卫星任务的发展是漫长的。因此,应尽早审查新一代量子有效载荷的可能的候选人,以提高用于空间应用的量子技术的开发。
摘要:氢能作为一种能源载体和储能系统受到了全球的广泛关注。氢能载体引入了电转氢 (P2H) 和电转氢转电 (P2H2P) 设施,将多余的能源储存在可再生能源储存系统中,具有大规模储存容量、可运输性和多种用途等特点。这项工作研究了混合太阳能光伏 (PV)/氢/燃料电池供电的蜂窝基站在发展绿色移动通信以减少环境恶化和缓解化石燃料危机方面的技术经济可行性。使用电力可再生能源混合优化模型 (HOMER) 优化工具进行广泛的模拟,以评估不同相关系统参数下的最佳规模、能源产量、总生产成本、单位能源生产成本和碳足迹排放。此外,借助基于 MATLAB 的蒙特卡罗模拟,严格评估了无线网络的吞吐量和能源效率性能,其中考虑了多径衰落、系统带宽、传输功率和小区间干扰 (ICI)。结果表明,对于电信行业来说,由推荐的混合供电系统驱动的宏蜂窝基站将是一种更稳定、更可靠的绿色解决方案。混合供电系统拥有约 17% 的剩余电力和 48.1 小时的备用容量,通过保持更好的服务质量 (QoS) 来提高系统可靠性。最后,将建议系统的结果与其他供电方案和之前发表的研究工作进行了比较,以证明所提系统的有效性。
由于人口的增长,能源需求也随之增加。为了应对这种需求的增长,增加可再生能源在能源结构中的份额是一种解决方案,因为它是一种可持续的、无限的和零温室气体排放的能源。然而,这些资源的特点是间歇性的。为了解决这个问题,我们需要储存额外的能量。最有前途的技术之一是压缩空气储存,事实证明,它在非高峰时段储存能量并在高峰时段再生能量是有用的。本文研究了由光伏系统和压缩空气储能组成的混合发电系统的可行性。混合电力系统旨在比较有和没有储能选项的系统可行性。混合系统旨在为水处理厂供电。对包括消耗、发电和储存在内的能源状况进行了分析。研究了空气储存温度对储能平准化成本和对电网能源依赖性的影响。研究了环境温度和压缩机压力比对各种系统参数(如进出空气质量流量和系统效率)的影响。结果表明,当存储温度从 300°C 升至 800°C 时,存储效益的平准化成本为 0.025 美元/千瓦时。当压力比从 2 增加到 30 时,系统效率从 70% 降至 28%,同时保持环境温度恒定在 300°K。相反,当环境温度从 295°K 升至 320°K 时,系统效率从 60% 升至 64%,同时保持压力比为 3。
该术语定义为辅助服务一组用于确保电力系统(特别是输配电网)可靠运行的操作。备用电源备用电源 - 电池储能系统,可以与本地发电机配对使用,也可以单独使用,在电网发生故障并与电网隔离时为客户住宅、商业或工业场所的负载供电。电池储能系统有助于实现客户有意孤岛,直到电网恢复或可用能量耗尽。黑启动黑启动 - 电池储能系统通过给输电线通电来恢复部分电网的运行,或为大型发电站的运行提供补充电力,以在系统范围的故障(通常称为停电)后开始恢复电网的过程。需求响应客户通过降低电力消耗来响应来自公用事业系统运营商的可靠性触发或价格触发的能力。可调度 根据从控制中心收到的信号改变系统参数或输出的能力 分布式能源存储 在此背景下,涉及不集中在 T&D 系统中的电池储能系统,即与变电站储能分开 能源套利 涉及在系统边际成本相对较低的时期对电池储能系统充电,然后在系统边际成本较高的时期对电池储能系统放电 能源转移 涉及通过存储并在稍后释放将 T&D 系统上的能量从一个时间段转移到另一个时间段。在有剩余的情况下,也可以对电池储能系统进行充电