。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 10 月 25 日发布了此版本。;https://doi.org/10.1101/2024.10.25.620277 doi:bioRxiv 预印本
菲洛巴氏菌(Filobasidium)属,是菲洛巴·西迪亚斯(Filoba Sidiales)的家族丝虫科的成员,是一组具有许多代表性物种的基本菌。迄今为止,已经在菲洛巴氏菌中描述并接受了14种。尽管最近发表了一些来自中国的新发现,但丝状岛的物种多样性仍未完全理解。样品,并检查了该属的物种多样性。三个新物种,即F. pseudomali sp。nov。 ,F。Castaneaesp。nov。和F. Qingyuanense sp。nov。基于内部转录间隔物(ITS)的系统发育分析以及大亚基(LSU)rRNA基因的D1/D2结构域以及其单独的序列与表型特征相连。提供了完整的描述,插图,与类似物种的比较以及系统发育分析。这项研究的发现实质上丰富了中国菲洛巴氏菌的生物多样性。
摘要。系统基因组学使我们能够通过时间和估计这些信号的系统发育网络的进化过程的历史信号。来自全基因组数据的见解进一步使我们能够从基因组杂交,渗入和祖先多态性中指出对系统发育信号的贡献。在这里,我们关注这些过程如何导致响尾蛇(Crotalus and Sistrurus属)之间的系统发育不一致,该群体基于多种分子数据集和分析方法存在许多相互矛盾的系统发育假设。我们使用从几乎所有已知物种中采样的转录组产生的基因组数据来解决响尾蛇系统发育的不稳定性。这些基因组数据,通过基于联合和网络的方法进行分析,揭示了许多快速物种形成的实例,在这些实例中,各个基因树与物种树相冲突。此外,响尾蛇的进化历史主要由不完整的物种和频繁的杂交主导,这两者都可能影响了过去对系统发育的解释。我们提出了一个新的框架,其中只能根据全基因组数据和基于网络的分析方法才能理解该组的进化关系。我们的数据表明,像在响尾蛇中看到的那样,网络辐射只能在系统基础环境中才能理解,在我们尝试了解其他快速辐射物种中进化史的尝试中,需要采取类似的方法。[异常区域; crotalinae;多样化;剖宫产;渗入;系统基因学;重组。]
摘要:在假设快速发展的位点没有保留由于取代而没有保留准确的系统发育信号的假设下,快速发展的位点(通常称为“缓慢”分析)广泛用于微生物系统发育重建。因此,删除经历了多次取代的地点将改善系统发育分析中的信噪比,其余较慢发展的位点保留了更可靠的进化关系记录。在这里,我们表明,与此假设相反,即使是经常在生命之树中使用的保守蛋白中存在的最快发展的位点,也包含可靠且有价值的系统发育信息,并且对此类部位的修剪也会对系统发育倒置的准确性产生负面影响。在生命研究中使用的核糖体蛋白数据集建模的模拟比对始终表明,慢速进化位点比甚至最快发展的位点恢复真正的两部分的可能性较小。此外,特定于位点的取代率与准确恢复的短分支两部分的频率呈正相关,因为在这些时间间隔内缓慢发展的位点不太可能在这些间隔内经历过替代。使用已发表的生命序列对准数据集,我们还表明,慢速和快速发展的站点都包含类似不一致的系统发育信号,对于快速发展的站点,这种不一致的不一致可以归因于较差的对齐质量。此外,修剪快速站点,缓慢的位点或两者都被证明对多个进化模型的系统发育重建产生了重大影响。这在真实的和asgardarchaeota群体的结果中最明显,这对于实施不同的修剪方案特别敏感。
我们使用过滤器 -1 和 -2 对原始 ReDeeM 数据进行了重新分析,结果表明这两个过滤器得出的结果大相径庭。两个过滤器之间的连接指标和由此产生的系统发育树存在很大差异,这一事实进一步证实了我们最初的担忧,即人工 mtDNA 变体(现在已被过滤器 -2 移除)仍然是所谓系统发育信号的重要驱动因素。反复提出的 k-NN 分析在设计上存在缺陷,不能被视为对 ReDeeM 方法的验证,也不能为人工变体的有效性提供支持。没有考虑影响单分子支持变体对克隆和系统发育推断的稳健性的其他混杂因素。作者认为,通过强调观察预期的 mtDNA 突变特征谱,仅由一个分子支持的变体仍然对系统发育推断具有参考价值。然而,我们对污染率的估计表明,环境 mtDNA 是 ReDeeM 方法的一个显著混杂因素。值得注意的是,污染率明显高于之前报道的 mtscATAC-seq 4,这需要进一步研究,但仅支持这样一种观点,即低分子拷贝数支持的 mtDNA 变体不应被视为系统发育推断。
使用MCMC算法的贝叶斯系统发育分析产生了以系统发育树和相关参数样本形式的系统发育树的poserior分布。树空间的高维度和非欧几里得性质使总结树空间中后验分布的核心趋势和方差复杂。在这里,我们介绍了一个可从树的后部样本构建的可构造的新的树木分布和相关的点估计器。通过模拟研究,我们表明,这一点估计器的性能也至少要比产生贝叶斯后摘要树的标准方法更好。我们还表明,执行最佳的摘要方法取决于样本量和以非平凡的方式的尺寸 - 问题。
角菜属(Cerastium alpinum)约有 200 个物种,主要分布在北半球的温带气候中。我们在此报告了角菜(Cerastium alpinum)、北极角菜(C. arcticum)和黑色角菜(C. nigrescens)的完整叶绿体基因组。cp 基因组长度范围为 147,940 至 148,722 bp。它们的四部分环状结构具有相同的基因组织和内容,包含 79 个蛋白质编码基因、30 个 tRNA 基因和 4 个 rRNA 基因。每个物种的重复序列从 16 到 23 个不等,回文重复最为常见。每个物种已鉴定的 SSR 数量范围为 20 到 23 个,它们主要由含有 A/T 单元的单核苷酸重复组成。根据 Ka/Ks 比率值,大多数基因受到纯化选择。新测序的叶绿体基因组具有高频率的 RNA 编辑特征,包括 C 到 U 和 U 到 C 的转换。基于 71 个蛋白质编码基因的序列,重建了 Cerastium 属和石竹科内的系统发育关系。系统发育树的拓扑结构与所研究物种的系统位置一致。Cerastium 属的所有代表都聚集在一个分支中,而 C. glomeratum 与其他分支的相似性最小。
摘要:东方山羊豆是豆科植物,具有重要的生态和经济价值,因其抗逆性强、蛋白质含量高而被广泛栽培。然而,东方山羊豆的基因组信息尚未见报道,限制了其进化分析。由于基因组较小,叶绿体相对容易获得基因组序列以进行系统发育研究和分子标记开发。本文对东方山羊豆叶绿体基因组进行了测序和注释。结果表明,东方山羊豆叶绿体基因组长度为125,280 bp,GC含量为34.11%。共鉴定出107个基因,包括74个蛋白质编码基因,29个tRNA和4个rRNA。东方山羊豆叶绿体基因组中丢失了一个反向重复(IR)区。此外,与其近缘种G. officinalis的叶绿体基因组相比,有5个基因( rpl22 、 ycf2 、 rps16 、 trnE-UUC 和 pbf1 )丢失。共检测到84个长重复序列和68个简单序列重复序列,可作为G. orientalis及其近缘种遗传研究的潜在标记。我们发现,在G. officinalis与其他3个Galegeae物种( Calophaca sinica 、 Caragana jubata 、 Caragana korshinskii )的两两比较中,petL 、 rpl20 和 ycf4 3个基因的Ka/Ks值大于1,表明这3个基因受到了正向选择。 15个Galegeae物种的比较基因组分析表明,大多数保守的非编码序列区域和两个基因区域(ycf1和clpP)分化程度较高,可作为DNA条形码用于快速准确的物种鉴定。基于ycf1和clpP基因构建的系统发育树证实了Galegeae物种间的进化关系。此外,在所分析的15个Galegeae物种中,Galega orientalis在ycf1基因中有一个独特的30 bp内含子,而Tibetan liangshanensis在clpP基因中缺少两个内含子,这与现有只有IR缺失支(IRLC)中的甘草属物种缺少两个内含子的结论相反。总之,首次确定并注释了G. orientalis的完整叶绿体基因组,这可以为Galegeae属内尚未解决的进化关系提供见解。
1韩国大学医学院微生物学系,韩国共和国,韩国共和国2病毒疾病研究所,韩国大学医学院,韩国北部共和国,韩国共和国,3韩国研究生课程,韩国大学医学院研究生课程3加拿大伯纳比西蒙·弗雷泽大学分子生物学与生物化学系,韩国康奇大学,汉奇大学,汉奇大学,北加拿大大学,北加拿大大学,第7次预防医学单位,韩国,韩国,韩国第五,韩国第一个预防医学,韩国共和国共和国第一个预防医学部,第三次预防医学部,第三次预防医学部,第三次预防医学,韩国共和国第三次预防医学,第三次预防医院大韩民国Chuncheon,大韩民国Chuncheon,大韩民国陆军总部,大韩民国总部,大韩民国大韩民国,大韩民国的第二次预防医学部门,大韩民国,大韩民国12