随着人们对建立精准医疗的大脑生物标记的兴趣日益浓厚,需要能够产生有效可靠指标的非侵入性、可扩展的神经成像设备。Kernel 的第二代 Flow2 时域功能近红外光谱 (TD-fNIRS) 系统满足非侵入性和可扩展神经成像的要求,并使用经过验证的模式来测量大脑功能。在这项工作中,我们研究了从 Flow2 记录中得出的一组指标的重测信度 (TRR)。我们采用了 49 名健康参与者的重复测量设计,并在多个时间点和不同的耳机上量化了 TRR——在不同的实验条件下,包括静息状态、感觉和认知任务。结果表明,静息状态特征的可靠性很高,包括血红蛋白浓度、头部组织光衰减、低频波动幅度和功能连接。此外,被动听觉和 Go/No-Go 抑制控制任务在几天内都表现出相似的激活模式。值得注意的是,可靠性最高的区域在听觉任务期间位于听觉区域,在 Go/No-Go 任务期间位于右前额叶区域,这与先前的文献一致。这项研究强调了 Flow2 衍生指标的可靠性,支持其实现使用基于大脑的生物标记物进行神经精神和神经认知障碍的诊断、治疗选择和治疗监测的愿景的潜力。
现代电力系统之所以稳定,是因为发电和需求是实时平衡的。为了让电网管理人员有余地维持这种平衡,电网规模的储能设备正在越来越多地部署。目前实现稳定可靠电力系统的另一种现有技术是将可再生能源与电池储能系统 (BESS) 相结合。集成电网规模的 BESS 以提高电网可靠性至关重要,因为可再生能源可能有些难以预测,但越来越多地被整合到现有电网中。凭借其巨大的电能存储和分配能力,BESS 有助于电网平衡供需。BESS 通过存储高峰时段未使用的能源来帮助维持电网稳定性。这些能源主要来自太阳能和风能等可再生能源,然后在需求最高时将其送回系统。BESS 的主要功能包括能量存储和时移、频率调节、电压支持和增强电网可靠性。电池技术和控制的发展使它们更便宜,并且是未来电网的必然选择。本研究讨论了 BESS 的功能和要素、电化学电池的类型、电池退化的影响以及它们对电网优化和可靠性的应用。总之,BESS 是电网现代化、弹性和能源系统发展的重要推动因素。
1)随着分布式光伏统筹上网电价逐年下降以及储能系统成本降低,建设分布式+储能系统实现 分布式电源全部就地消纳具有较好的经济效益,同时利用储能系统每天“两充两放”的特性, 合理利用阶梯电价,提高系统效益。With the distributed PV grid prices and the energy storage system cost decreasing every year, there is good economic benefit to build the distributed + energy storage system to achieve all the local power consumption, and because the energy storage system charges and discharges twice every day, the step tariff , if well employed, can increase the system benefit. 2)通过能量管理系统控制分布式电源+储能系统平滑输出,减小外部气象条件对分布式电源输 出的影响,提高供电电能质量。Achieving smooth output from the distributed power supply + energy storage system by the energy management system, reducing the impact to the distributed power output from the external weather conditions and improving the quality of power supply. 3)通过分布式电源+储能系统组成并网型微电网系统,当电网故障时,自动切换至独立运行模 式,保持重要负荷连续供电/或者利用储能系统代替企业原有设计起到后备电源(UPS)的作 用。When the grid breaks down, the microgrid system that is composed of the distributed power supply + energy storage system automatically switches to stand-alone mode, which maintains continuous power supply or uses energy storage system to replace the UPS in the original design.
Fig.1 RICE 原则定义了一个对齐系统应具备的四个关键特性,这四个特性并无特定顺序: (1) 鲁棒性 (Robustness) 指人工智能系统的稳定性需要在各种环境中得到保证; (2) 可解释性 (Interpretability) 指人工 智能系统的操作和决策过程应该清晰易懂; (3) 可控性 (Controllability) 指人工智能系统应该在人类的指导 和控制下运行; (4) 道德性 (Ethicality) 指出人工智能系统应该遵守社会规范和普适价值观。这四个原则指 导人工智能系统与人类意图和价值观的对齐。他们本身并不是最终目标,而是服务于对齐的中间目标。
我要感谢 Stoll 教授对这项工作的二级指导以及过去的许多有趣的讨论。我还要感谢 Marco Villa、Eberhard Gill 教授、Jasper Bouwmeester、Bulent Altan 和 Michael Swartwout 教授:你们的建议和批判性问题对我帮助很大,改进了这项工作。我要向众多参与调查的人员和与我分享经验的 CubeSat 开发人员表示衷心的感谢,同时也感谢他们就 CubeSat 错误进行的始终非常公开的讨论。如果没有德国航空航天中心的支持,MOVE-II 和这项工作都不可能实现,在此我要特别感谢 Christian Nitzschke 先生。德国各地各个 CubeSat 项目的毕业生每天都在证明这里有多么出色的太空训练计划。
我要感谢 Stoll 教授对这项工作的第二次监督以及过去的许多有趣的对话。我还要感谢 Marco Villa、Eberhard Gill 教授、Jasper Bouwmeester、Bulent Altan 和 Michael Swarwout 教授:你们的建议以及你们的关键问题对我帮助很大,并改进了这项工作。非常感谢参与我的调查的众多参与者以及与我分享经验的许多 CubeSat 开发人员,并对有关 CubeSat 错误的始终非常开放的讨论表示赞赏。如果没有德国航空航天中心的支持,尤其要感谢 Christian Nitzschke 先生,MOVE-II 和这项工作都是不可能完成的。来自德国各地各个 CubeSat 项目的毕业生每天都在向人们展示这里存在着多么精彩的太空培训项目。
摘要 当今新兴的计算机技术已经引入了整合来自众多工厂系统的信息并及时向操作人员提供所需信息的能力,这是上一代工厂设计和建造时无法想象的。例如,小型模块化反应堆 (SMR) 工厂设计将广泛使用基于计算机的 I&C 系统来实现各种工厂功能,包括安全和非安全功能。另一方面,现有轻水反应堆工厂的数字升级正变得必不可少,以便维持和延长工厂寿命,同时提高工厂性能,降低老化和过时设备的维护成本,并促进预测系统监控和人机界面 (HMI) 决策。新建和现有工厂广泛使用数字仪表和控制系统引发了与 20 世纪 70 年代工厂使用的上一代模拟和基本数字 I&C 系统无关的问题。这些问题包括数字 I&C 系统中出现未知故障模式和 HMI 问题。因此,数字系统的可靠性/安全性、数字 I&C 系统故障和故障模式的分类以及软件验证仍然是轻水可持续性和 SMR 计划以及整个数字 I&C 系统社区的重要问题。第 1 卷至第 4 卷中描述的研究旨在帮助指导开发
光伏电池式电容器水泵系统及其在波动的环境条件下的可靠性madhumita das抽象的杂交能量存储的光伏水泵系统可在高度波动的辐射下在云或部分云云时提高系统性能和可靠性。这项研究的主要目的是在太阳能水泵系统中找到添加双储能,电池和超级电容器的可靠性和有效性。在这项研究中,已经在测试系统上分析了累积的泵效率,系统效率和水抽动成本,该测试系统由12 V,9 AHR电池,210 F超级电容器库和12 V,14.4 W,可潜水性离心水泵的动态泵为2m,以估算系统尺寸的最佳PV模块。发现,太阳辐射的每单位变化系统变化的流量变化速率范围为0.051至0.092 l/hr/w/m 2。与直接耦合的水泵系统相比,流速的变化有了显着改善,这证明了其在波动辐射下的潜力。水抽成本在印度卢比1.51至1.59之间。建议使用PV式式式水上泵水抽水系统用于农业应用中的部分和多云的日子。
任务分析方法可用于在错误发生之前消除导致错误的先决条件。它们可用作新系统设计阶段或现有系统修改的辅助手段。它们也可用作现有系统审计的一部分。在对重大事故进行详细调查时,任务分析也可采用回顾模式。此类调查的起点必须是系统地描述事故发生时实际执行任务的方式。当然,这可能与执行操作的规定方式不同,任务分析提供了一种明确识别此类差异的方法。此类比较对于确定事故的直接原因非常有价值。2.面向行动的技术 2.1 分层任务分析 (HTA) 分层任务分析是一种系统方法,用于描述如何组织工作以实现工作总体目标。它涉及以自上而下的方式确定任务的总体目标,然后确定各种子任务以及为实现该目标应在何种条件下执行这些任务。这样,复杂的规划任务可以表示为操作的层次结构 - 人们必须在系统和计划中执行的不同事情 - 进行这些操作所需的条件。分层任务分析首先说明人员必须实现的总体目标。然后将其重新描述为一组子操作和指定何时执行它们的计划。该计划是 HTA 的重要组成部分,因为它描述了工人必须关注的信息源,以便发出各种活动的需求信号。如果分析师需要,可以进一步重新描述每个子操作,同样以其他操作和计划的形式。图 1.1 显示了隔离液位变送器进行维护任务的 HTA 示例。