现实世界中的行为会产生直接的感官后果。在数字环境中模仿这些后果是可以实现的,但技术限制通常会在用户操作和系统响应之间施加一定的延迟。评估这种延迟对用户的影响非常重要,最好使用不会干扰其数字体验的测量技术。一种这样的不引人注目的技术是脑电图 (EEG),它可以通过从连续的 EEG 记录中提取事件相关电位 (ERP) 来捕捉与运动反应和感官事件相关的用户大脑活动。在这里,我们利用了这样一个事实:感官 ERP 成分(特别是 N1 和 P2)的幅度反映了感官事件被视为自身行为的预期结果的程度(自我生成效应)。参与者(N = 24)通过在虚拟键盘上输入代码来打开门,在虚拟现实 (VR) 环境中引发听觉事件。在参与者内部设计中,用户输入和声音呈现之间的延迟是跨块操纵的。有时,虚拟键盘会由模拟机器人操作,从而产生外部生成声音的控制条件。结果表明,相对于外部生成的声音,自生成声音的 N1(但不是 P2)振幅会降低,而 P2(但不是 N1)振幅会通过声音呈现的延迟以分级方式进行调制。N1 和 P2 效应之间的这种分离可以追溯到对自生成声音的基础研究。我们建议将 P2 振幅作为候选读数,以评估数字环境在系统延迟方面的质量和沉浸感。
摘要 - 无人驾驶汽车(无人机)或无人机的狂热系统是在确保公共安全的同时调节,导航和控制无人机旅行的船上发现的关键电子组件。当代无人机航空电子学通过实现稳定的沟通,安全的识别协议,新颖的能源解决方案,多传感器准确的感知和自主性导航,精确的路径计划,确保避免碰撞,可靠的轨迹控制以及在UAV系统中的有效数据传输,从而促进无人机任务的成功。此外,必须对电子战威胁预防,检测和缓解以及与无人机操作相关的监管框架进行特殊考虑。本评论介绍了每个无人机航空电子系统的角色和分类学,同时涵盖了每个系统中可用替代方案的缺点和好处。对无人机通信系统,天线和位置通信跟踪进行了调查。识别系统响应空对空或空对面的询问信号。无人机古典和更具创新的功率来源。感知系统的快速发展改善了无人机自动导航和控制功能。本文审查了共同的感知系统,导航技术,路径计划方法,障碍方法和跟踪控制。现代电子战采用先进的技术,必须通过同样高级的方法来应对公众安全。因此,这项工作详细概述了常见的电子战争票价威胁和最先进的对策和防御辅助工具。此外,在国家监管框架和认证过程的背景下,分析了无人机安全事件。最后,审查了无人机的数据库通信和标准,因为它们可以有效且快速的实时数据传输。
摘要 — 意图解码是免提人机交互 (HCI) 中不可或缺的过程。传统的眼动追踪系统使用单一模型注视持续时间可能会发出忽略用户真实期望的命令。在本研究中,引入了一种眼脑混合脑机接口 (BCI) 交互系统,通过融合多模态眼动追踪和 ERP(源自 EEG 的测量)特征来检测意图。当 64 名健康参与者在 25 个图标中执行 40 分钟的定制自由搜索任务时,记录了他们的眼动追踪和 EEG 数据。提取了相应的眼动追踪和 ERP 注视持续时间。采用五个已验证的基于LDA的分类器(包括RLDA,SWLDA,BLDA,SKLDA和STDA)和广泛使用的CNN方法从离线和伪在线分析中验证特征融合的有效性,并通过调节训练集和系统响应持续时间来评估最佳方法。我们的研究表明,多模态眼动和ERP特征的输入在主动搜索任务的单次试验分类中实现了意图检测的优异性能。并且与单模型ERP特征相比,该新策略也在不同的分类器之间获得了一致的准确率。此外,与其他分类方法相比,我们发现SKLDA在离线测试(ACC=0.8783,AUC=0.9004)和不同样本量和持续时间长度的在线模拟中融合特征时表现出更优异的性能。总之,本研究揭示了一种利用眼脑混合BCI进行意图分类的新颖有效的方法,并进一步以更精确、更稳定的方式支持了免提HCI的实际应用。
摘要 - 大脑计算机界面(BCIS)的快速演变显着影响了人类计算机相互作用的领域,具有稳态的视觉诱发电势(SSVEP),作为一种尤其是强大的范式。这项研究探讨了高级分类技术利用可解释的模糊转移学习(IFUzzyTL)来增强基于SSVEP系统的适应性和性能。最近的努力通过创新的转移学习方法加强了减少校准要求,从而通过策略性地应用域适应性和很少的动作学习策略来完善跨主题的生成性并最大程度地减少校准。深度学习中的开创性发展还提供了有希望的增强功能,促进了稳健的领域适应性,并显着提高了SSVEP分类的系统响应能力和准确性。但是,这些方法通常需要复杂的调整和广泛的数据,从而限制了立即适用性。ifuzzytl引入了一个自适应框架,该框架将模糊逻辑原理与神经网络体系结构相结合,重点关注有效的知识传递和域自适应。ifuzzytl通过整合模糊的推理系统和注意机制来完善人类干预格式的输入信号处理和分类。这种方法通过有效管理脑电图数据的固有可变性和不确定性来增强模型的精度,并与现实世界的运营需求保持一致。在三个数据集中证明了该模型的功效:12JFPM(1s的12JFPM(89.70%精度为149.58),基准(ITR为85.81%,ITR的精度为85.81%),ITR的准确性为213.99)和Eldbeta(76.50%的IT and and and and ath and and and and and and and and and and and and and and and aft)and 94.63)和94.63)和94.63) SSVEP BCI性能的基准。
摘要 机电一体化系统设计的关键要素是从设计过程一开始就在整个设计过程中同时进行多学科知识的协同集成、建模、仿真、分析和优化,并针对更高的性能、速度、精度、效率、更低的成本和功能等约束,从而产生具有更多协同作用的产品。本文提出了基于机电一体化设计方法的智能太阳能跟踪系统的构想和开发,使得太阳能电池板在白天和季节变化中都能准确垂直于阳光光束(准确指向太阳),光照最强。整个系统和子系统同时进行选择、设计、集成建模、测试和优化;此外,还针对不同输入类型(包括实际输入高度角)验证了整体系统响应。所得结果表明设计的简单性、准确性和适用性,可以满足所有设计要求。所提出的设计可用于研究或教育目的。关键词:机电一体化设计,太阳跟踪器,建模/仿真。1.简介 1 机电一体化系统设计过程可分为系统、简单和清晰的设计步骤,包括:问题陈述;概念设计和功能规范;系统和所有子系统的并行(并发)设计和整体集成,包括:机械、电子、软件、控制单元、控制算法和接口子系统的选择、设计和协同集成;建模和仿真;原型设计、测试和优化;最后是制造和商业化(Farhan A. Salem 等人,2013 年)(Yu Wang 等人 2012 年)(Devdas Shetty 等人,2011 年)(Sarah Brady,2008 年)(L. Al-Sharif,2010 年)。本文提出了基于机电一体化设计方法的智能太阳能跟踪系统的构想和开发。2.预研究过程-问题陈述。在可再生能源中,太阳能是可持续能源最基本和先决条件的资源,因为它无处不在、丰富且
德国航空航天中心智能结构技术概述 作者:Hans Peter Monner 和 Peter Wierach,德国航空航天中心 (DLR),复合结构和自适应系统研究所 摘要 德国航空航天中心复合结构和自适应系统研究所于 1993 年成立了 Adaptronics 部门。它是德国最大的研究自适应结构系统的科学家团队。主要目标是 − 主动噪声控制, − 主动振动控制, − 主动形状控制。该部门致力于国家项目,如先进飞机结构(DLR 项目)、LEITPROJEKT ADAPTRONIK(BMBF 项目)、自适应并联机器人(DFG 项目)和国际项目,如 FRIENDCOPTER(EU IP)、INMAR(EU IP)、ARTIMA(EU STREP)、电活性聚合物(ESA)。这涉及智能结构的许多方面研究,包括材料特性、执行器和传感器的开发和设计、智能元件的结构集成、先进控制概念的开发以及自适应系统的模拟和建模。本文概述了该部门在该领域的一些活动。1.简介 智能结构涉及五个关键要素:结构材料、分布式执行器和传感器、控制策略和电源调节电子设备。借助这些组件,智能结构能够响应不断变化的环境和操作条件(例如振动和形状变化)。微处理器分析传感器的响应,并使用集成控制算法命令执行器施加局部应变/位移/阻尼,以改变弹性机械系统响应。执行器和传感器通过表面粘合或嵌入高度集成到结构中,而不会导致系统质量或结构刚度发生任何重大变化。智能结构技术是一个高度跨学科的领域,相关方法和技术仍处于早期发展阶段。在经历了大约在 90 年代初的“炒作”阶段之后,人们对智能结构技术的潜力和局限性有了相当清晰的认识。这也是为什么现在智能结构技术的众多应用不断发展以主动控制振动、噪音和变形的主要原因。2.主要活动应用范围从空间系统到固定翼和旋翼飞机、汽车、光学系统、机床、医疗系统和基础设施。
摘要 本文探讨了为实际工业项目设计经典 PID 控制器和新兴智能技术的有效组合的实用方法。分析了模糊控制器 (FC) 设计方法的演变。基于分析,提出并考虑了结合两种方法的结构和方法。本文的目的不是开发数学理论,而是就用模糊控制取代人工操作员控制以及 FC 参数的在线参数调整提供一些实用建议。这两个要点通过两个应用项目进行了说明,并进行了更详细的研究。第一个项目包括设计一个 FC 来监督自动飞机制导系统中的 PID 控制系统。第二个项目描述了模糊 PID 型控制器与其他模糊系统的缩放因子的调整,用于通过传输线连接到无限总线的同步发电机的励磁控制。关键词:模糊控制;PID 控制器;控制系统设计 1。模糊控制与 PID 控制:斗争还是合作?尽管进行了大量研究并提出了大量不同的解决方案,但大多数工业控制系统仍然基于传统的 PID 调节器。不同的来源估计 PID 控制器的份额在 90% 到 99% 之间。造成这种情况的一些原因可能如下。a) PID 控制器坚固且易于设计。b) PID 和系统响应参数之间存在明确的关系。由于 PID 控制器只有三个参数,因此工厂操作员对这些参数以及指定的响应特性之间的相互影响有着深入的了解。c) 近几十年来,许多 PID 调节技术得到了精心设计,从而简化了操作员的工作。d) 由于其灵活性,PID 控制可以从技术进步中受益。大多数经典工业控制器都提供了特殊程序来自动调整其参数(调节和自调节)。但是,PID 控制器无法为所有控制问题提供通用解决方案。所涉及的过程通常很复杂且随时间变化,具有延迟和非线性,并且通常具有定义不明确的动态。当过程变得太复杂而无法用分析模型描述时,传统方法不太可能对其进行有效控制。在这种情况下,经典的控制方法在许多情况下可以简化工厂模型,但不能提供
在时间范围内不断向后回滚的地方(通常称为“退缩的地平线控制”)。即使MPC控制器按定义依赖于系统模型,模型参数中的某些不确定性或预测外部干扰时的不确定性可以通过状态反馈循环来补偿,该状态反馈循环在随后的最佳最佳控制问题中适应实际系统响应。在优化工业过程(Bordons&Camacho,1998)和交通流量(Ferrara等,2015)中,可以找到许多MPC应用,其中控制器用于应对时间变化的参数和不断发展的边界条件。MPC对于风电场的协调至关重要(Vali等,2019),这会在风向上永久变化。基于MPC的控制器也证实了它们在自动驾驶中的效率,在该自动驾驶中,车辆面临动态障碍(Babu等,2018)。在结构控制中,大多数MPC控制器都依赖于预测外部激发力演化的专门设计的动态模型。Oveisi等。 (2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。 该方法已成功验证了受谐波干扰的压电层压梁的验证。 Wasilewski等人。 (2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。 (2007)。Oveisi等。(2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。该方法已成功验证了受谐波干扰的压电层压梁的验证。Wasilewski等人。(2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。(2007)。在Zelleke和Matsagar(2019)中,开发了一种基于能量的预测控制算法,以抑制受风激发的多局建筑物的振动。Yuen等人提出了一种基于概率的鲁棒性控制方法来减轻暴露于不确定激发的细长建筑物的振动的替代方法。在Takacs和Rohal'-Ilkiv(2014)中测试了五种最佳和次优MPC方法,以确定它们的构成复杂性和在线启动的能力,以减轻配备Piezoce-Ramic Control设备的自由,稳态和短暂振动。作者观察到最佳和次优策略之间的控制绩效没有显着多样性。他们建议在计算上有效的次优方法(例如,最低时间显式或牛顿– Raphson的MPC)可以用于较大维度的系统而不会大大损失性能的系统。
非侵入性脑刺激作为医院、诊所和家庭中局灶性癫痫的治疗 作者:Karimul Islam,MBBS 1;Keith Starnes,医学博士 2;Kelsey M. Smith,医学博士 1;Thomas Richner,博士 1;Nicholas Gregg,医学博士 1;Alejandro A. Rabinstein,医学博士 1;Gregory A. Worrell,医学博士、博士 1;Brian N. Lundstrom,医学博士、博士 1 1 美国明尼苏达州罗切斯特市梅奥诊所神经内科 2 美国明尼苏达州罗切斯特市梅奥诊所儿童和青少年神经内科 通讯作者:Brian N. Lundstrom 地址:梅奥诊所,神经内科,200 First St SW,罗切斯特,MN 55905,美国。电话:507-284-4458 电子邮件:Lundstrom.Brian@mayo.edu 关键词:神经调节、TMS、TDCS、非侵入性脑刺激 正文页数:16 字数:3248 参考文献数:29 图表数:4 表格数:1 我们确认已阅读期刊关于出版道德问题的立场,并确认本报告符合这些准则。披露和作者贡献如下。数据可用性声明位于方法部分。披露:GW 和 BNL 是 Mayo Clinic 开发并授权给 Cadence Neuroscience Inc. 的知识产权的发明人。BNL 放弃了对版税的合同权利。GW 已将知识产权授权给 NeuroOne Inc.。GW 和 NG 是 UNEEG Inc. 研究设备试验的研究人员。 BNL 是 Medtronic 深部脑刺激治疗癫痫上市后研究 (EPAS)、Neuropace RNS 系统响应性刺激青少年癫痫 (RESPONSE) 研究和 Neuroelectrics tDCS 癫痫患者研究的首席研究员。Mayo Clinic 代表 GW 和 BNL 从 NeuroOne、Epiminder、Medtronic 和 Philips Neuro 获得了研究支持和咨询费。资金:BNL 得到了 NIH NINDS(K23NS112339 和 R01NS129622)的支持。作者贡献:KI 审阅了医疗记录、进行了统计分析并撰写了初稿。BNL 参与了工作的所有方面并提供监督。所有作者都参与了工作构思或数据采集,严格修改了手稿并批准了最终版本。要点:• 经颅磁刺激 (TMS) 和经颅直流电刺激 (tDCS) 可在多种情况下减少癫痫发作 • TMS 和 tDCS 可降低发作间期癫痫样放电率 (IED) • tDCS 可供局灶性癫痫患者在家中安全使用 • 非侵入性脑刺激对局灶性癫痫患者耐受性良好且安全
导弹徽章纹章 第一个独特的导弹徽章于 1958 年 5 月 23 日设立,用于表彰空军内部直接参与导弹开发、维护或操作的人员。该徽章最初称为导弹徽章,授权给在 Snark、Atlas、Goose、Thor、Jupiter、Matador、Mace、Bomarc、Titan 和 Minuteman 导弹系统中执行任务或与之相关的人员。1963 年,名称更改为导弹兵徽章,并建立了三个专业级别:基础、高级和导弹兵大师。佩戴徽章的荣誉属于完成专门导弹训练的人。1979 年 4 月,导弹兵徽章的名称再次更改,这次简称为导弹徽章,删除了任何与性别相关的内容。除了最初的导弹系统,导弹徽章现在还授予维和人员、空射巡航导弹、常规空射巡航导弹和先进巡航导弹武器系统的人员。1988 年,随着“导弹作战指示符”(环绕导弹徽章的花环)的批准,最初的导弹徽章成为专门颁发给导弹维护人员的徽章。2004 年,导弹徽章被批准佩戴给完成常规弹药军官课程并监督 2M/W 人员维护、装卸制导导弹或导弹系统 12 个月的军官。导弹徽章的原始设计由弗吉尼亚州阿灵顿的美国陆军纹章部准备。徽章有四个重要元素。使用通用导弹是故意的,这样就不会与库存中的任何特定导弹相似。徽章呈沙漏形状,以表示武器系统响应能力的及时性。四颗星,导弹两侧各两颗,代表导弹系统的作战范围,即整个航空航天环境。最后,导弹下方的两个垂直带代表导弹在飞行中留下的残留蒸汽痕迹。空军维修徽章纹章 猎鹰的设计是位于华盛顿特区国家大教堂的维修猎鹰的复制品。猎鹰象征着空军的空中力量,并通过飞机、弹药和通信电子设备的维护而成为可能。猎鹰的爪子里抓着一枚炸弹和一架通用的 21 世纪飞机。它们交叉在一起,以显示职业领域的相互关系。奖项的三个级别通过在猎鹰上方添加一颗星来表示高级级别,在星周围添加橄榄花环来表示大师级别。这架飞机采用流线型设计,以描绘 21 世纪的飞机,象征着所有由佩戴徽章进入 21 世纪的人员维护的飞机。飞机有三个前缘,代表三个入伍维护专业:飞机、弹药和通信电子。人员就像飞机的前缘一样,共同支持飞行任务。炸弹采用流线型设计,以描绘现代弹药,象征着空军维护人员的主要任务,即确保他们将炸弹投向目标。场地无障碍,描绘了一片自由的天空,徽章周围的橄榄花环象征着和平,我们通过专业的维护来捍卫和平。
