•致俄亥俄州立大学的电子显微镜与分析中心(CEMAS)的研究人员(CEMAS)。•支持空间的光学晶体是在Redwire的工业结晶设施(ICF)上制造的国际空间站(ISF)。•空间制造的光学晶体可以改善激光系统性能,因为由于空间制造过程,由于更少的夹杂物和缺陷,它们具有较高的激光损伤阈值。•出售了两克空间制造的晶体。•大约价值为每公斤200万美元。
在动态控制任务的背景下,探索了各种自动化水平 (LOA),这些自动化水平指定了人类操作员和计算机控制的程度,作为提高整体人机性能的手段。传统上,自动化系统被探索为二元功能分配;人类或机器被分配到给定的任务。最近,中间级别的自动化被讨论为保持操作员参与系统性能的一种手段,从而提高情境意识并减少环外性能问题。这里介绍了一种适用于各种心理运动和认知任务的 LOA 分类法。该分类法包括各种通用控制系统功能分配方案。分配给人类操作员和/或计算机的功能包括监控显示、生成处理选项、选择“最佳”选项并实施该选项。通过测量 LOA 分类法对人类/系统性能、情境意识和工作量的影响,在动态和复杂的认知控制任务中评估了 LOA 分类法的影响。30 名受试者进行了涉及各种自动化水平的模拟试验。发生了几次自动化故障,并评估了环外性能下降。结果表明,就性能而言,人类操作员从任务实施部分的自动化中获益最多,但仅限于正常操作
开发用于聚合酶链反应(PCR)的低成本热循环蛋白正在对病毒引起的大流行时代感兴趣。PCR是诊断的标准黄金。但是,在一个低收入国家,该设备的可用性有限。在这项工作中,热循环器的开发使用市场上可用的电子模块。中心部分是用于加热和冷却的热电,可以控制的嵌入式系统和低调的冷却风扇。系统温度控制使用了前馈,爆炸和比例综合衍生物(PID)控制的组合。使用Chien伺服调整成功获得了PID的控制参数。馈电和爆炸控制用于优化冷却周期并最大程度地减少上升时间。该系统在变性,退火和延长温度下显示出非常合适的温度准确性,温度偏差小于0.5°C。即使系统一直不停地运行24小时,系统性能也可以保持。 通常用于CPU冷却的低调冷却风扇在保持温度稳定性方面显示出良好的结果。系统性能也可以保持。通常用于CPU冷却的低调冷却风扇在保持温度稳定性方面显示出良好的结果。
I.简介阶段同步是5G新无线电(NR)毫米波(MMWave)通信系统性能的关键组成部分。准确的相位同步对于保持通信的可靠性和效率至关重要,尤其是在MMWave频段内,通常从24 GHz到100 GHz。这些高频带实现了前所未有的数据速率和带宽,这对于满足对高速无线连接的需求不断增长至关重要。5G-NR的演变在很大程度上依赖于MMWave技术来提供增强的移动宽带服务,超可靠的低潜伏期通信和大规模的机器型通信,从而解决了传统频带的容量限制[1-3]。但是,5G-NR MMWAVE网络的部署伴随着重大挑战,尤其是在相位误差的准确估计和补偿中。这些错误来自各种来源,包括振荡器缺陷,通道效应和硬件障碍,所有这些都会引起常见相位误差(CPE)。CPE估计和补偿对于确保MMWave系统中可靠的通信至关重要,因为即使是较小的相位偏差也会大大降低系统性能,从而导致错误率提高和信号质量降低[4]。
监控和控制基础设施可以放置在地理上分散的位置,由多种设备和系统架构组成,并受到严格的环境和保护法规的约束。随着预算缩减和系统扩展,在优化系统性能和数据可用性的同时,最大限度地降低部署和运营成本变得越来越重要。Trio™ 许可和免许可数据无线电为 SCADA 和远程遥测应用提供了经济高效、多功能的无线解决方案。
从系统设计到长期服务的Powin经验端到端解决方案。拥有超过17 GWH的良好往绩,全球范围内的构建和600万台电池电池,Powin是一位可信赖且已建立的基于美国的集成商。我们提供世界一流的物流以进行准时交付,并依靠我们的24/7远程操作中心,超过500名现场服务技术人员和授权服务提供商,以确保最佳的系统性能。
摘要 发电机的转速影响产生的频率和电压,而这种变化会影响负载侧。为此,我们需要一种能够优化微水力发电性能的控制设备。因此,我们需要一种通过应用负载频率控制 (LFC) 来优化微水力发电性能的技术。LFC 通过实施超导磁能存储 (SMES) 和电容能存储 (CES) 而设计,此应用将提供功率补偿以减少甚至消除由消费者电力负载变化引起的频率振荡。为了获得最佳的微水力发电性能,必须为 SMES 和 CES 设置正确的参数。本研究中的 SMES 和 CES 参数调整提出使用 Bat 算法。该算法使用的目标函数是优化积分时间绝对误差 (ITAE)。对于性能分析,在负载变化的情况下测试系统,然后分析调速器、涡轮机和系统频率响应。为了测试系统的可靠性,本研究采用了几种控制、SMES、CES 与基于比例、积分、微分 (PID) 的传统控制相结合的方案。正确的控制参数将更优化地改善系统性能。最佳系统性能可以从调速器、涡轮机的响应和频率的最小超调以及系统切换到稳定状态的快速稳定时间中看出。
不同系统在雨天溢流方面的许可要求各不相同,并且基于《污水溢流许可项目环境影响报告》(悉尼水务公司,1998 年)(SOLP EIS)中概述的长期系统频率目标。系统性能通过“系统频率”来衡量,即经批准的水力下水道系统模型预测的 10 年内雨天溢流次数。许可条件取决于每个 STS 相对于长期目标的表现。
分布式孔径红外对抗 (DAIRCM) 团队 DAIRCM 团队在 2020 年取得了重大成就。该团队完成了联合紧急作战需求 (JUONS) 测试,并通过多次敌方火力指示、导弹警告、激光警告和集成事件提高了系统性能。这些测试活动的成功完成使得作战测试和评估部队指挥官于 2020 年 10 月认可了数字系统模型。