该项目是全球首个采用 ABB 高惯性 SC 配置的项目。它将 67 MVAr SC 与 40 吨飞轮相结合,将瞬时可用惯性乘以 3.5 倍。这种方法将中型 SC 与飞轮相结合,其主要优势在于,与提供同步电容器安装所需的全部惯性相比,系统损耗要低得多。将两个中型 SC 耦合在一起还可以提供高水平的冗余、更大的惯性和更好的可控性。
计算机服务器、电源和电子镇流器等非线性负载的增加导致电力系统运行中出现各种不良现象。其中最重要的是谐波污染、电压失真和电力系统电压波动。谐波电压分量会导致重启、电力系统损耗、错误、机器过热,并可能对通信线路造成严重干扰。SPC 可以实时监视和控制单相非线性负载(如数据库、UPS 和 IT 服务器)的激活状态。因此,SPC 可以保持网络的最佳电能质量,符合 IEEE Std. 的限制。519、AS-2279、EN61000-3-4 和 BS G5/4。
摘要:可再生能源生成器(REG)单位的最佳计划有助于满足未来的电力需求,并提高灵活性。因此,本文提出了一种基于遗传算法(GA)的混合组合(GA)和使用分析功率流方程的溶液,以最佳的量和放置电力系统网络中的REG单元的位置。GOGA的目标是系统损失最小化和灵活性改善。使用KRON方程,目标函数表示系统损失是不同发电机生成的功率的函数。基于电压偏差和系统损耗,提出了一种灵活性指数(FI)来评估灵活性的改善。在测试系统的各种总线上放置REG之后,将执行功率流量运行,并计算系统损耗,这被认为是染色体纯度值。GOGA通过更改REG单元的位置来搜索拟合度函数的最低值。交叉,突变和替换算子来生成新的染色体,直到根据REG的大小和位置获得最佳解决方案为止。在印度的Rajasthan Rajya Vidyut Prasaran Nigam Ltd.(RVPN)的Rajasthan Rajya Vidyut Prasaran Nigam Ltd.(RVPN)的一部分的一部分进行了一项研究。使用线性拟合模型计算了10年时间范围的载荷预测。进行了成本 - 固定分析,并确定拟议的GOGA提供了一种可行的可行解决方案,具有提高的灵活性。确定GOGA可确保高收敛速度和良好的解决方案准确性。此外,与常规GA相比,GOGA的性能优越。
陶瓷具有较高的强度和模量、优异的耐磨性和耐化学性,特别是优异的耐热性1,2),主要应用于在高温下严重摩擦或高应力负荷等极端环境下使用的部件,可应用于燃气轮机、发动机、电池、热交换器等需要高工作温度的航空航天、汽车、能源领域的结构和部件3,4),将陶瓷应用于这些应用可通过提高工作温度和减少系统损耗来提高效率5)。烧结是一种传统的陶瓷制造方法,其按以下顺序进行:1)粉末制备(造粒),2)压缩成型,3)坯体加工,4)烧结,5)后退火和精加工等(图1)。粉末制备是指通过添加添加剂来造粒以促进致密化的过程。
微电网可以定义为由少量分布式能源组成的单一电力系统。这些能源的组合可以是并网模式,也可以是独立的。在应用方面,微电网形式的单个能源可能会给电网带来许多问题。其中一些问题包括电压升高、超过线路和变压器岛的热极限的可能性以及巨大的资本成本。幸运的是,微电网可以解决所有这些问题。另一方面,微电网可以具有一些属性,例如它可以被视为单个负载并作为单个负载运行。从需求方面来看,由于所用技术的性质,它能够满足当地对热能和电力、电压支持、更好的可靠性、更好的电能质量、系统损耗减少和环境排放减少等方面的要求。此外,值得注意的是,要使微电网成为现实,需要考虑更多因素
随着各国寻求减少碳排放,气候变化缓解努力正在引起能源部门的重大变化。使用可再生能源具有多种环境优势,包括减少温室气体排放和扩大可用能源。电能质量涉及各种因素,包括电压稳定性、谐波失真(电子校正)、频率调节和无功功率平衡。电网的稳定性和电气设备的不间断运行需要高电能质量。然而,这些 PQ 参数可能会受到可再生能源固有特性(多变性、传播和电力电子设备的广泛使用)的不利影响。电压和频率波动是电网稳定性的一个常见问题,是由太阳能和风能的间歇性引起的。这可能具有挑战性。此外,可再生能源系统中逆变器或转换器等电力电子设备的使用越来越多,可能会导致电网内出现谐波失真问题。这些失真可能会导致设备故障、系统损耗增加和电网效率降低。
这项工作比较并量化了带有太阳能光伏(PV)的住宅建筑物的案例研究中三个电池系统损耗表示的年损失。两个损失表示形式考虑了不同的操作条件,并使用电池电力电子转换器(PEC)的测量性能,但使用恒定或依赖电流的内部电池电池电阻的不同。第三表示是无关紧要的,并使用(固定的)往返效率。工作使用负载和PV轮廓的次数测量,包括不同的PV和电池尺寸组合的结果。与具有当前依赖性内部电阻的情况相比,结果表明使用恒定电池内部电阻不足,并将年度损失差异量化为-38.6%。结果还表明了通过固定的往返效率对电池系统的效率进行建模的缺陷,其损失差异在-5%至17%之间,具体取决于情况。此外,突出显示了计算细胞损失的必要性,并且量化了其对转换器加载的依赖性。
这项工作比较并量化了带有太阳能光伏(PV)的住宅建筑物的案例研究中三个电池系统损耗表示的年损失。两个损失表示形式考虑了不同的操作条件,并使用电池电力电子转换器(PEC)的测量性能,但使用恒定或依赖电流的内部电池电池电阻的不同。第三表示是无关紧要的,并使用(固定的)往返效率。工作使用负载和PV轮廓的次数测量,包括不同的PV和电池尺寸组合的结果。与具有当前依赖性内部电阻的情况相比,结果表明使用恒定电池内部电阻不足,并将年度损失差异量化为-38.6%。结果还表明了通过固定的往返效率对电池系统的效率进行建模的缺陷,其损失差异在-5%至17%之间,具体取决于情况。此外,突出显示了计算细胞损失的必要性,并且量化了其对转换器加载的依赖性。