2 背景 6 2.1 简介 . ... . 10 2.4.1 一致性测试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 北约通用车辆架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.4 数据模型......................................................................................................................................................................................21
2 背景 6 2.1 简介 . ... . 10 2.4.1 一致性测试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 北约通用车辆架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.4 数据模型......................................................................................................................................................................................21
2 背景 6 2.1 简介 . ... . 10 2.4.1 一致性测试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 北约通用车辆架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.4 数据模型......................................................................................................................................................................................21
摘要 — 无线电力传输 (WPT) 是电动汽车 (EV) 轻松充电技术的突破之一。人们提出并实施了不同类型的无线充电器拓扑结构,以满足各种约束,如电力传输效率、无线传输距离和错位公差。然而,对于电动自行车和电动滑板车等中低功率电动汽车的非接触式充电,耦合分离和传输效率仍未得到充分开发。为了在容易出现错位问题的车辆中实现远距离 WPT,使用串联 (SS) 补偿 WPT。传统的 SS 补偿 WPT 使用电压馈送转换器进行电力转换。但这些拓扑结构的组合允许系统中的反向电流流动,这将影响源的传输效率和寿命。为了防止这种情况,可以使用反向阻塞二极管或电流馈送转换器。虽然反向电流问题可以解决,但这些方法似乎进一步降低了电力传输效率。本文试图优化基于电流馈电转换器的 SS-WPT,以实现比传统设计更高的耦合分离、更高的电力传输效率和更高的错位容差。为实现此目的,对电流馈电转换器的输入电感器和 SS-WPT 的初级线圈进行了调整,而不会影响磁共振条件。在耦合分离为 200 毫米时,传输效率为 94%,比传统的基于电压源逆变器的可再生能源供电的 SS-WPT 充电效率高出 20%。在原型设计中验证了该概念后,通过在实时电动自行车中对其进行测试来验证结果。
摘要:随着多电/全电飞机的发展,特别是混合电推进或电力推进飞机的进步,在电力需求不断增长、散热能力受限的情况下,必须解决飞机能量系统设计和运行优化的问题。本文概述了飞机电源系统架构优化和能量管理系统的研究现状。本文从多能源形式的角度回顾了飞机电源系统架构优化的基本设计方法。可再生能源如光伏电池和燃料电池被融入机载电源系统,由于其不确定性和功率响应速度,也使得飞机能量优化分配问题变得复杂。本文分析并介绍了飞机电源系统优化、评估技术和动态管理控制方法的基本思想和研究进展。总结了飞机能源系统架构工程设计优化方法的发展趋势,并从重量、可靠性、安全性、效率、可再生能源特性等约束条件下的多目标优化中得出。根据飞机的不同功率流关系,对基于能源效率和电能质量的成本函数进行了评论和讨论。本文将不同飞机微电网架构的动态控制策略与其他方法进行了比较。回顾了一些电力推进飞机和多电飞机的综合能源管理优化策略或方法。分析了飞机能量优化技术的数学考虑和表达,并比较了一些特点和解决方法。结合一些参考文献,讨论了热能和电能耦合关系研究领域以及飞机电力系统的电能质量和稳定性。最后,本文还对未来机场微电网与电力推进飞机动力系统的能量交互优化问题进行了探讨和预测。本文基于EMS和架构优化的最新技术发展,提出业界对飞机动力系统电气化的常识和未来趋势,并提出在电气化飞机推进系统架构选择中应遵循的EMS+TMS+PHM
6 系统架构和拓扑结构 ................................................................................................16 6.1 AAtS 系统架构 ................................................................................................17 6.2 SC-206 系统架构 ................................................................................................18 6.3 AGIE 系统架构 ................................................................................................20 6.4 OGC 系统架构 ................................................................................................23 6.5 协调系统架构映射 .............................................................................................23 6.5.1 SC-206 到 AAtS 映射 .............................................................................................23 6.5.2 AGIE 到 SC-206 系统架构映射 .............................................................................25 6.5.3 OGC 映射 .............................................................................................................26 6.5.3.1 OGC 到 SC-206 系统架构映射 .............................................................................28 6.5.3.2 OGC 到 AGIE 映射 .............................................................................................30
在先进飞机配置 (AVACON) 研究项目中,进行了一架中程飞机的协作概念设计,该飞机配备超高涵道比 (UHBR) 发动机,预计于 2028 年投入使用。本文介绍了 AVACON 中飞机机载系统的整体架构、尺寸和评估方法。为此,回顾了文献中提出的概念系统设计方法的重要贡献,以确定方法改进的方向。描述了贡献合作伙伴的角色分配及其系统设计活动的方法。拥有不同的贡献者保证,从整体飞机到详细子系统设计的任务以及系统模型保真度的不断提高都得到了覆盖。此外,还定义了一种最先进的基线架构,它将作为开展权衡研究的起点,以研究系统架构概念和创新技术的潜力。推导出先进飞机配置所隐含的大量系统设计要求和新边界条件,为计划中的技术研究提供展望。
摘要 — 无人驾驶飞行器 (UAV) 或无人机的航空电子系统是机载关键电子元件,用于调节、导航和控制无人机飞行,同时确保公共安全。现代无人机航空电子设备共同协作,通过实现稳定的通信、安全的识别协议、新颖的能源解决方案、多传感器精确感知和自主导航、精确的路径规划来促进无人机任务的成功,从而保证避免碰撞、可靠的轨迹控制和无人机系统内的高效数据传输。此外,必须特别考虑电子战威胁的预防、检测和缓解,以及与无人机操作相关的监管框架。本综述介绍了每种无人机航空电子系统的作用和分类,同时介绍了每种系统中可用替代方案的缺点和优点。调查了无人机通信系统、天线和位置通信跟踪。介绍了响应空对空或空对地询问信号的识别系统。讨论了无人机经典和更创新的电源。感知系统的快速发展提高了无人机的自主导航和控制能力。本文回顾了常见的感知系统、导航技术、路径规划方法、避障方法和跟踪控制。现代电子战使用先进技术,必须采用同样先进的方法来应对,以保证公众安全。因此,本文详细介绍了常见的电子战威胁以及最先进的对抗措施和防御措施。此外,本文还在国家监管框架和认证流程的背景下分析了无人机安全事件。最后,本文回顾了无人机的数据总线通信和标准,因为它们能够实现高效、快速的实时数据传输。
摘要 针对光伏储能系统高效充电应用需求,提出一种新型光伏储能应用控制系统架构,根据光伏输出的实时发电数据动态调整系统工作状态,实现在不同环境参数下分层组合运行模式及运行状态变化,并提出相应算法实现高效控制。与常规控制系统架构相比,所开发的电路可实现高效光伏充电及多模式灵活应用。通过实现实验样机并得出测试结果,验证了所提系统的有效性及优越性,为光伏储能系统的应用提供了新的思路和参考。 关键词:光伏储能,控制系统架构,多模式灵活应用,高效充电 分类:功率器件与电路
抽象针对太阳能光伏(PV)储能系统的高效率充电应用要求,预先发送了用于太阳能光伏的新型控制系统体系结构。系统根据太阳能光伏输出的实时发电数据动态调整其工作状态,从而在应用不同的环境参数时实现层次结合的操作模式和操作状态变化。另外,提出了辅助算法以实现有效的控制。与传统的控制系统体系结构相比,开发的电路可以实现高效率太阳能充电和多模式浮动应用。实施了实验原型,并得出了测试结果,以验证拟议系统的效果和优越性,该系统为应用光伏储能系统的应用提供了新的思想和参考。关键字:太阳能光伏能量存储,控制系统体系结构,多模式浮动应用,高效率充电分类:电源设备和电路