系统要求 ................................................................................1-1 硬件要求 ................................................................................1-1 软件要求 ................................................................................1-1 零件清单 ................................................................................1-2 系统框图 ................................................................................1-2 安全性 ......................................................................................1-2 安装 ......................................................................................1-3 系统设置 ................................................................................1-3 将控制器设置为 ModBus 协议 .............................................1-4 配置控制器 ......................................................................1-4 通道分组 .............................................................................1-6 其他配置选项 ......................................................................1-7 监控配置的控制器 .............................................................1-10
本研究考虑了识别安全约束和为使用神经网络控制系统 (NNCS) 的深度强化学习 (RL) 战术自动驾驶仪开发运行时保证 (RTA) 的问题。本研究研究了 NNCS 执行自主编队飞行而 RTA 系统提供防撞和地理围栏保证的特定用例。首先,应用系统理论事故模型和过程 (STAMP) 来识别事故、危险和安全约束,并定义地面站、载人飞行长机和代理无人僚机的功能控制系统框图。然后,将系统理论过程分析 (STPA) 应用于地面站、载人飞行长机、代理无人僚机和僚机内部元素之间的交互,以识别不安全的控制动作、导致每种动作的情景以及降低风险的安全要求。这项研究是 STAMP 和 STPA 首次应用于受 RTA 约束的 NNCS。
2.1 概述 ................................................................................................................ 8 2.2 ASME Y14.100-2017 定制 .............................................................................. 9 2.3 图纸元素 ........................................................................................................ 10 2.4 旧图纸和零件识别号 ................................................................................ 13 2.5 使用 PDM 系统的零件识别号 ...................................................................... 13 2.6 关联列表和图纸数据 ............................................................................. 13 2.7 单个、多个和剖面视图 ............................................................................. 15 2.8 图纸标题和项目命名法 ............................................................................. 16 2.9 图形符号、名称、字母符号和缩写 ............................................................. 16 2.10 图纸的类型和应用 ............................................................................................. 17 2.10.1 电气/电子图表(ASME Y14.24-2012,Sec.12) ................................ 17 2.10.1.1 系统框图或功能框图 .............................................................. 17 2.10.1.2 高级电气原理图 (AES) .............................................................................. 17 2.10.1.3 基本电气原理图 (EES) .............................................................................. 17 2.10.1.4 地面综合原理图 (GIS) ............................................................................. 18 2.10.1.5 电力立管图 (美国国家 CAD 标准 – V5,图纸类型 6) ............................................................................................. 18 2.10.1.6 电气面板一览表 (美国国家 CAD 标准 – V5,图纸类型 6) ............................................................................................. 18 2.10.2 修改图 ............................................................................................................. 18 2.10.3 布局和方案图 ............................................................................................. 19 2.10.4 空间和重量分配图 (ASME Y14.24) .............................................. 19 2.10.5 有限尺寸图 .............................................................................................. 19 2.10.6 草图 .............................................................................................................. 20 2.11 标签和标牌 ...................................................................................................... 20
在约翰霍普金斯大学 APL 技术文摘 1 的一篇早期文章中,我重点介绍了新技术在雷达信号处理中的应用,以便通过陆基雷达探测海面目标。这项工作代表了信号处理的独立研究和开发工作,最终为海军试验场开发了一项开发任务,用于自动探测和跟踪地面目标,以实现靶场安全和控制应用。早期文章“用于探测地面目标的高级信号处理技术”描述了使用高速数字集成电路、模数转换器和基于微处理器的单板计算机开发和实施的信号处理算法。由此产生的信号处理器在连接到地面监视雷达时,以较低的、受控良好的误报率提供目标声明,并且对小型和大型地面目标具有良好的检测潜力。为太平洋导弹测试中心(Pt.)开发的系统。加利福尼亚州穆古市将该信号处理器放置在三个非共置地面监视雷达上,并将目标检测数据链接到中央站点,以进行自动目标跟踪、轨迹数据显示,并最终进行距离跟踪和控制(参见图I 了解雷达的位置,参见图2 了解系统框图)。构成自动目标跟踪系统的自动轨迹启动、目标跟踪、图形数据显示和数据接口功能是在基于商用单板计算机的分布式微处理器架构中实现的。这种传感器轨迹数据融合方法被证明是高效和有效的,并且有可能在实时传感器轨迹数据融合中得到更广泛的应用。在 Pt.Mugu 中心认识到了这一潜力,并将努力范围扩大到包括全面的传感器轨迹数据融合系统。
飞机仪表系统基础知识 Bruce Johnson,NAWCAD 本课程将涵盖与飞机仪表相关的各种主题。数据、遥测、仪表系统框图、标准、数据要求、传感器/规格、视频、1553 总线、使用要求配置模拟数据通道、创建 PCM 映射以获取采样率、遥测带宽、记录时间、GPS、音频、遥测属性传输标准 (TMATS) 和测量不确定性 - 解释结果。这对新员工来说是很好的介绍,对现有员工来说也是进修。IRIG 106-17 第 7 章分组遥测下行链路基础和实施基础 Johnny Pappas,Safran Data Systems,Inc.本课程将重点介绍信息,以便对 2017 年发布的 IRIG 106 第 7 章分组遥测下行链路标准建立基本了解。它还将重点介绍机载和地面系统硬件的实施以及处理 IRIG 106 第 7 章分组遥测数据的方法。演示将介绍支持传统 RF 传输、数据记录、RF 接收、地面再现和第 10 章数据处理方法所需的特殊功能的实施。性能评估的预测分析 Mark J. Kiemele,空军学院协会 实验设计 (DOE) 是一种不仅可以用于系统的设计和开发,而且可以用于系统性能的建模和验证的方法。建立有用的预测模型,然后对其进行验证,可以减轻采购决策的负担。本教程将研究两个为满足一组共同要求而构建的原型。DOE 将用于对每个原型的性能进行建模。然后,将使用验证测试来确认模型并评估每个原型的性能能力,即原型满足要求的程度。这有助于比较两个系统的功能,从而增强对采用哪个系统的决策。本教程没有任何先决条件,因为分析将通过计算机进行演示。
在约翰霍普金斯大学 APL 技术文摘 1 的一篇早期文章中,我重点介绍了新技术在雷达信号处理中的应用,以便通过陆基雷达探测海面目标。这项工作代表了信号处理的独立研究和开发工作,最终为海军试验场开发了一项开发任务,用于自动探测和跟踪地面目标,以实现靶场安全和控制应用。早期文章“用于探测地面目标的高级信号处理技术”描述了使用高速数字集成电路、模数转换器和基于微处理器的单板计算机开发和实施的信号处理算法。由此产生的信号处理器在连接到地面监视雷达时,以较低的、受控良好的误报率提供目标声明,并且对小型和大型地面目标具有良好的检测潜力。为太平洋导弹测试中心(Pt.)开发的系统。加利福尼亚州穆古市将该信号处理器放置在三个非共置地面监视雷达上,并将目标检测数据链接到中央站点,以进行自动目标跟踪、轨迹数据显示,并最终进行距离跟踪和控制(参见图I 了解雷达的位置,参见图2 了解系统框图)。构成自动目标跟踪系统的自动轨迹启动、目标跟踪、图形数据显示和数据接口功能是在基于商用单板计算机的分布式微处理器架构中实现的。这种传感器轨迹数据融合方法被证明是高效和有效的,并且有可能在实时传感器轨迹数据融合中得到更广泛的应用。在 Pt.Mugu 中心认识到了这一潜力,并将努力范围扩大到包括全面的传感器轨迹数据融合系统。
图 1.1 高斯 CDF 和相关可靠性函数 R(t) 图 1.2 系统 1(短持续时间,频繁中断)和系统 2(长持续时间,不频繁中断)的平均可用性 图 1.3 电子系统的浴盆曲线 图 1.4 不同 l 值时的指数分布 PDF 图 1.5 不同 l 值时的指数分布 CDF 图 1.6 TTR 的正态分布 PDF,其中 m = 8 h 和 s = 2 h 图 1.7 TTR 的正态分布 CDF,其中 m = 8 h 和 s = 2 h 图 1.8 海底光缆 TTR 的威布尔分布随机变量 图 1.9 串联和并联可靠性框图 图 1.10 串联结构可靠性框图 图 1.11 单线程卫星链路 RF 链 图 1.12 并联结构可靠性框图 图 1.13 并联卫星 RF 链系统 图 1.14一拖二(1:2)冗余HPA系统框图 图1.15 冗余马尔可夫链状态图 图1.16 冗余马尔可夫链状态图,相同组件 图1.17 单组件马尔可夫状态转换图 图1.18 热备用冗余马尔可夫状态转换图 图1.19 冷备用马尔可夫状态转换图 图1.20 蒙特卡洛系统分析算法 图1.21 组件模型 图1.22 状态向量算法流程图 图1.23 状态向量算法输出示例 图1.24 串行组件状态评估流程图 图1.25 并行组件状态评估流程图 图1.26 指数分布的TTR,MTTR=8h 图1.27 正态分布的TTR,MTTR=8h,方差=2h 图1.28 集中仓储与调度备用方法 图1.29 属地仓储与调度备用图 1.30 现场节约方法
附图列表 图 (1-1): - 本项目的风能转换系统框图 .............................................................................. 10 图 (3-2):- 水平轴和垂直轴风力涡轮机视图 .............................................................................. 16 图 (3-3): - 上风向三叶片 HAWT 和下风向两叶片 HAWT 示意图 17 图 (3-4): - 直接驱动和齿轮驱动风力涡轮机的内部结构 ............................................................. 18 图 (3-5):- 水平轴风力涡轮机的配置 ............................................................................................. 19 图 (3-6): - 垂直轴风力涡轮机所需的零件和组件 ............................................................................. 20 图 (3-7): - Simulink 中风力涡轮机模型的参数设置 ............................................................................. 22 图 (3-8): - 具有设置涡轮机参数的涡轮机功率特性 ............................................................................. 22 图 (3-9): - 鼠笼感应发电机剖面图 (Wenping Cao,2012 年 3 月) ............................................................................................................................................. 24 图(3-10): - 双馈感应发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................................. 25 图 (3-11): - 同步发电机剖面图 ............................................................................................................................. 27 图 (3-12): - 永磁同步发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................. 28 图 (3-13): - Matlab 中永磁同步机的配置 (用于项目) ............................................................................................................................. 31 图 (3-14): - Matlab 中永磁同步机的参数 (用于项目) ............................................................................................................. 32 图 (4-15): - 风能转换系统的电力电子部分框图 ............................................................................................................................. 34 图 (4-16): - 三相桥式整流器的电路图 (Rashid, 2014) ............................................................................................. 35 图 (4-17): - 输入波形和三相桥式整流器的输出电压 (Rashid, 2014) ...................................................................................................................................... 36 图 (4-18):- 降压转换器的电路图 (Rashid, 2014) ...................................................................... 39 图 (4-19): - 模式 1 的降压转换器等效电路图 (Rashid, 2014) ............................................. 40 图 (4-20):- 模式 2 操作的降压转换器等效电路图 (Rashid, 2014) ............................................................................................................................................... 40 图 (4-21):- 电感电流连续流动时降压转换器的输入和输出电压和电流的波形 ............................................................................................. 41 图 (4-22): - 恒压控制图像 ............................................................................................................. 45 图 (4-23): - 恒流控制图像 ............................................................................................................. 46 图 (4-24):- 风能转换系统的电池参数设置 ............................................................................. 47 图 (4-25):- 电池的标称电流放电特性 ............................................................................................. 48 图 (5-26):- 不同桨距角值的风力涡轮机特性 ............................................................................. 50 图 (5-27):- 相间电感相对于转子电角度的变化 ............................................................................. 51 图 (5-28): - 降压转换器的等效电路 ............................................................................................. 52 图 (5-29): - 充电控制示意图 (Her-Terng Yau, 2012) ........................ 54 图(5-30): - Buck 转换器等效电路 .............................................................................. 55
2.1 典型的太阳光谱分布显示 PV 感兴趣的区域 。.....................3 2.2 各种 PV 材料的相对光谱响应函数。.....................4 2.3 用于光伏材料评估的不同实验室灯的光谱分布。...........5 2.4 太阳光谱分布随大气质量增加的变化 M ......................6 2.5 太阳几何定义,包括法线角、天顶角、入射角和方位角 ............7 3.1 光学滤波器参数 ....................。。。。。。。。。。。。。。。。。。。。。。。。.......11 3.2 使用公式 (4) 时指示辐照度与真实辐照度变化示意图 ..........14 3.3 使用二极管阵列和扫描光栅光谱仪测量的 Spire 2 40A 的相对光谱分布与校准灯光谱的比较 ....................15 3.4 阵列光谱辐射计数据收集时序图 .........................16 3.5 带有 3 个误差线的光谱辐照度灯数据标准 ........................19 3.6 NREL 光谱辐射校准照片 ...............................2 2 3.7 NREL 光谱辐射计相隔六个月的校准文件比率 ..........2 3 3.8 汞氩灯的发射光谱显示用于波长校准的线条 .2 4 3.9 由于校准期间过量的(反射的)辐射到达输入光学器件导致白炽灯的光谱分布失真 ......................... ; .......2 5 4.1 氙源的光谱分布、ASTM E-892 全局光谱以及 CIS 和非晶硅电池的光谱响应,用于光谱失配计算 .............2 6 4.2 白炽灯源的CIS和非晶硅光谱响应和光谱辐照度曲线 ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..29 4.3 NREL 参考电池校准测量系统框图 ...............3 2 4.4 NREL 样品光谱响应报告 ..。。。。。。。。。。。。。。。。。。。。。。。。.................3 3 4.5 用于 Sandia/NIST 校准程序的设备示意图 ...................3 4 5.1 典型的绝对腔辐射计设计 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4 1 5.2 使用绝对腔辐射计参考的典型日射计响应度与一天中的时间。注意响应度有 1.2% 的差异... ................................... 44 5.3 遮光-非遮光日射强度计校准信号时间序列 .......< div> 。。。。。。。。。...... div>......4 5 5.4 示意图日射强度计的分量总和校准。................. div>....4 6 5.5 ' 典型太阳辐射计响应度响应与天顶角 . < /div>................. div>.........4 7 5.6 与图相同型号太阳辐射计的响应度与天顶角的关系。5.5 ........... div>....4 8 5.7 三纬度倾斜 NREL 光伏系统太阳辐射计与四季晴空的纬度倾斜参考太阳辐射计。.........。。。。。。。。。。。。。。。。。。。。.49 5.8 与 5.7 类似,但适用于部分多云条件 .....................................50 5.9 与图 5.7 和 5.8 类似,但阴天条件除外。.........................5 1 5.10 由晴空分量总和(直射光计/漫反射)数据生成的 NREL 太阳辐射计方位角-仰角响应图 ..。。。。。。。。。。。。。。。。。。。。。。。。.......5 2 5.11 未补偿的 50 结 T 型热电偶的温度响应非线性。还显示了补偿网络的响应。.................5 3 5.12 Eppley Laboratories 温度补偿网络示意图 ...................5 4 5.13 典型的 Eppley PSP 和 Kipp 和 Zonen 温度响应数据 ................5 4 5.14 单个 Eppley PSP 日射强度计的重复温度响应结果 ............5 5 6.1 用于 NREL 标准化室外测量系统的日射强度计支架,用于 PV 模块性能测试。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..5 8 6.2 NREL 户外测试设施使用的光伏系统日射强度计安装方案示例 ..60 6.3 用于评估光伏模块能量生产能力的拟议方法流程图 ........6 1 6.4 辐射数据的月/小时平均数据报告样本 .........................6 3 6.5 NSRDB 每小时数据格式注释示例 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 4