1 加利福尼亚大学地理系,美国加利福尼亚州伯克利市 2 太平洋西北国家实验室,美国华盛顿州里奇兰市 3 加利福尼亚大学区域地球系统科学与工程联合研究所,美国加利福尼亚州洛杉矶市 4 加州理工学院喷气推进实验室,美国加利福尼亚州帕萨迪纳市
摘要。div>十年级的海洋学,环境和生态变化已在萨利什海(Salish Sea)报道,这是东北太平洋地区的生态富有生产力的内陆海洋,支持数百万people的经济和文化。但是,存在与物理水性质有关的大量数据差距,使得很难评估趋势和物理海水性质之间的影响途径和海洋生态系统的生产力。为了解决这些差距,我们介绍了Salish Sea(Hotssea)V1的后标,这是一种使用核心用于欧洲海洋建模(NEMO)海洋发动机的3D物理海洋学模型,其时间覆盖为1980 - 2018年。我们使用了一种实验方法来逐步评估用于边界强制性大气和海洋重新分析产品的敏感性以及模型网格的Hor-Izontal离散化(〜1.5 km)。量化了从强迫继承的偏差,并发现在一个海洋边界上应用的简单温度偏置校正因子可实质上提高模型技能。盐度和温度的评估表明,在佐治亚州的海峡中表现最好。相对较大的偏见发生在近地表水域中,尤其是在模型网格的水平分辨率的托架狭窄的子域中。但是,我们证明该模型模拟了温度异常,并且在一般同意的观察结果一般同意的是,在整个水柱上具有世俗的变暖趋势。总体而言,尽管从强迫继承了偏见HOTSSEA V1在整个域的北部和中部部分观察到了稀疏的观测值。
• MBSE 的系统架构• MBSE 的一致性原则• MBSE 模型导向的系统工程环境• 基于MBSE 、 M&S 及T&E 的系统发展• 具系统规范的系统模型( System Model ) • 具系统整合的系统模型( System Model ) • 具人机均可辨认的系统模型( System Model ) • SET : 系统工程的转型架构• SET : 系统整合的建模环境• CBTE : 战力导向的测评架构• CBTE : 战力导向的系统发展• 战力导向的系统获得
摘要:基于化石燃料的常规能源生产会导致造成全球变暖的排放。对于零排放能源系统的成本优势过渡需要准确的能源系统模型,这是一项努力,需要通过技术学习效应进行有条理地建模成本降低。在这篇综述中,我们总结了通过学习曲线对技术学习建模和相关成本降低的共同方法。接下来是一项文献调查,以发现对未来能源系统建模所需的相关低碳技术的学习率。重点是(i)在氢生产技术中学习效应以及(ii)内源性学习在能量系统模型中的应用。最后,我们讨论了典型学习曲线和可能的补救措施的方法论缺陷。我们的主要结果之一是可以在能源系统模型中应用的学习率的最新概述。
摘要。由于光谱波模型计算成本高昂,风浪过程通常被排除在耦合地球系统模型之外,该模型需要解决空间和时间上波的频率和方向谱。地球系统模型中使用的现有均匀分辨率波浪建模方法无法恰当地表示从全球到沿海海洋尺度的波浪气候,这主要是因为沿海分辨率和计算成本之间的权衡。为了解决这一挑战,我们为 WAVEWATCH III (WW3) 模型引入了全球非结构化网格功能,该模型适合与美国能源部的能源百亿亿次地球系统模型 (E3SM) 耦合。新的非结构化 WW3 全球波浪建模方法可以在沿海地区提供更高的全球分辨率精度,但相对而言,均匀全球分辨率较低。这种新功能可以根据沿海应用的需要模拟物理相关尺度的波浪。
从一开始,系统模型就可以与 3D 流体模拟相结合,无论是用于引擎盖下热管理还是空气动力学。在早期设计中,可以使用简化的座舱来帮助在系统模型中提供改进的控制逻辑。这可以通过 Simcenter Amesim 中的嵌入式 CFD 进行扩展,用于为用户构建和运行 CFD 模型。随着设计的成熟,座舱的几何形状可用于查看加热和冷却通风口的位置和设计。此外,乘客也包含在数字模型中,因此您可以评估乘客的热舒适度。此外,通风口经过数字测试,以确保汽车符合政府关于挡风玻璃和侧视镜除冰/除雾的规定。3D 详细乘客舒适度模型是使用 Simcenter STAR-CCM+ 完成的,包括乘客拒绝的太阳辐射、传导、湿度和热量。结果可以映射回系统模型,以改进控制系统的逻辑,满足乘客的热舒适度。
智能技术系统(ITS)的开发需要高级方法,以满足不断增长的系统复杂性和各种利益相关者要求的种类。基于模型的系统工程(MBSE)已被证明是一种有前途的开发方法,可以应对不断增长的系统复杂性和提高企业敏捷性(Friedenthal 2023)。通常,系统工程(SE)致力于开发整体解决方案和集成系统组件以满足客户需求和功能(Hitchins 2007)。se首先定义系统要求,然后设计系统元素,合成和复杂系统验证(Walden 2023)。MBSE是基于文档的SE的扩展,其中有关系统的信息在系统模型中被形式化。这种以模型为中心的方法可以为跨学科系统开发所需的一致且可追溯的系统设计(Friedenthal 2023)。系统模型有助于更深入地了解系统需求与系统新兴属性,内部结构和行为之间的联系。建模使整合易于管理的不同观点的复杂性。系统模型是在研讨会中设计的,其中随后将模型数字化,或者使用建模工具直接以数字形式进行数字化(Tschirner 2016)。正式的建模语言,例如Sysml(Delligatti 2014),用于以正式的方式捕获系统设计。
现有的社区或城市规模能源系统建模和仿真工具通常受到限制,并且需要专家级建模的能力来开发系统模型。为了帮助填补这一空白,我们建议使用地热热泵的地区能源系统进行集成的尺寸和建模平台。所提出的平台使用与建筑物,孔菲尔德和地区能量循环有关的几何和非几何用户输入。平台大小大小,地热交换机,生成相应的区域能源系统模型,并自动运行年度模拟。我们平台上的Borefield组件模型已针对EnergyPlus进行了验证,以确保可靠的模拟性能。在本文中提供了一个案例研究,以证明所提出的平台的工作流和模拟结果的合理性。