本文回顾了在岛一级应用的现有自下而上的能源系统模型。本文的目的是回答以下研究问题:i)哪些能源系统模型主要在岛一级使用?ii)国家规模模型还用于岛屿应用吗?如果是,则实施哪种类型的其他约束或改编?iii)本文将提供这些约束的分类。iv)哪些是在岛上应用的能源系统模型的主要挑战?大多数使用的自下而上的能源系统模型是能量计划,单位承诺模型和本垒打。几乎37%的分析研究介绍了专门为岛屿应用设计的模型。其余部分利用最初为国家 /地区设计的模型(47%)或微网格(16%)级别的应用程序。已确定岛上应用所需的其他约束是:电网的可靠性和鲁棒性,水的脱盐,电网的车辆,需求响应和海上运输。结果表明,已确定的其他约束更常见于专门为Insular应用程序设计的模型实现。尤其是单位承诺模型能够直接考虑电网范围的可靠性和鲁棒性,而诸如Energy Pllan,Homer和H 2 Res之类的模型必须根据使用指标来考虑它们的替代方法。
德国航空航天中心(DLR),网络能源系统研究所,象征者。4, 70563 Stuttgart, Germany b Stuttgart Research Initiative on Integrated Systems Analysis for Energy (STRise), Keplerstraße 7, 70174 Stuttgart, Germany c German Institute for Economic Research (DIW Berlin), Mohrenstraße 58, 10117 Berlin, Germany d Research Center for Energy Economics (FfE), Am Bl¨utenanger 71, 80995 Munchen,德国E Reiner Lemoine Institute,Rudower Chaussee 12,12389柏林,德国柏林F学院高压设备和电网研究所,数字化和能源经济学,数字化和能源经济学(IAEW),RWTH AACHEN大学,Schinkelstraße6 52056 Aachen,德国ACHEN,DEMACHINCE ISACE ISACHENICERIADS ACHENICTION for POLIVERINGIAL POLESICTIST和ELECTRIVE) J¨agerstraße 17-19, 52066 Aachen, Germany h Institute for Power Generation and Storage Systems (PGS), E.ON ERC, RWTH Aachen University, Mathieustraße 10, 52074 Aachen, Germany i J¨ulich Aachen Research Alliance, JARA-Energy j Chair for Management Science and Energy Economics (EWL), University of Duisburg-Essen, Universit¨atsstr.11,45117德国埃森K能源经济学与理性能源使用研究所(IER),斯图加特大学,Heßbréuhlstraße49a,70565德国斯图加特,德国
这项研究分析了运输部门电力的影响,涉及静态充电和电动道路系统(ERS)对瑞典和德国电力系统的影响。通过比较两个模型包的结果来研究对大型ER的电力系统的影响:1)由电力系统投资模型(ELIN)和电力系统调度模型(EPOD)组成的建模包; 2)能源系统投资和调度模型(范围)。对两个型号软件包运行相同的方案,并比较ER的结果。建模结果表明,大规模实施ERS引起的额外电力负载主要取决于模型和场景,这是由瑞典风力发电(40 - 100%)的投资(20 - 75%)和德国的太阳能(40-100-100%)所遇到的。这项研究还得出结论,ERS增加了电力系统中的峰值功率需求(即净负荷)。因此,在使用ERS时,需要在峰值电源单位和存储技术上进行额外的投资,以满足这种新负载。与ERS相比,其他电力负载的明智集成,例如在乘用车的家用位置优化静态充电,也可以促进在包括ERS在内的电力系统中充分利用可再生用电。不同模型的结果之间的比较表明,假设和方法论选择决定了哪种类型的投资(例如,风,太阳能和热电厂),以涵盖使用ERS引起的电力需求。尽管如此,在所有情况下,模型包的投资都会增加太阳能(德国)和风能(瑞典)的投资,以涵盖ERS的新电力需求。
摘要。由于光谱波模型计算成本高昂,风浪过程通常被排除在耦合地球系统模型之外,该模型需要解决空间和时间上波的频率和方向谱。地球系统模型中使用的现有均匀分辨率波浪建模方法无法恰当地表示从全球到沿海海洋尺度的波浪气候,这主要是因为沿海分辨率和计算成本之间的权衡。为了解决这一挑战,我们为 WAVEWATCH III (WW3) 模型引入了全球非结构化网格功能,该模型适合与美国能源部的能源百亿亿次地球系统模型 (E3SM) 耦合。新的非结构化 WW3 全球波浪建模方法可以在沿海地区提供更高的全球分辨率精度,但相对而言,均匀全球分辨率较低。这种新功能可以根据沿海应用的需要模拟物理相关尺度的波浪。
本报告介绍了 2020 年 6 月 19 日至 7 月 9 日在伊利诺伊州诺斯布鲁克的 UL 大型火灾测试设施中进行的三项安装级测试的结果。安装级测试包括一个模拟启动储能系统 (ESS) 单元和两个目标单元,安装在配备防爆燃通风口的国际标准化组织 (ISO) 容器内。所有测试均采用相同的锂离子 (li-ion) 电池配置进行。启动 ESS 单元包括九个模块,总容量为 28.9 kWh。每个模拟模块包含九个模拟电池。每个模拟电池由 30 个 18650 锂离子电池组成,每个模拟电池的等效容量为 99 Ah。目标单元的装载容量为启动单元的三分之一。
可再生能源的间歇性是将可再生能源发电整合到电网的主要挑战之一。可再生能源的变化或可用的可再生能源预测误差可以通过在电网中纳入分布式能源存储系统 (ESS) 来解决 [1]–[4]。与电网连接的 ESS 的优势包括削减峰值负荷和降低发电机爬升率。然而,在将 ESS 模型纳入优化问题时,特别是凸最优潮流 (DC OPF) 问题,由于使用无损 ESS 模型 [5] 或非凸 ESS 操作模型,需要使用计算限制方法 [3],[6],因此确保适当的 ESS 动态可能会受到很大限制。在本文中,我们对与电网连接的 ESS 模型的凸松弛进行了分析,该模型在 DC OPF 问题中有单独的充电和放电项。我们考虑一个一般的直流 OPF 问题,它协调传统发电机、分布式可再生能源和受网络功率流约束的 ESS,以满足网络负载,同时最小化发电成本并考虑发电容量约束。在这项工作中,我们使用 Karush Kuhn-Tucker (KKT) 条件来展示何时解决科学问题,科罗拉多大学博尔德分校,科罗拉多州博尔德,80309 美国(电子邮件:{kaitlyn.garifi; kyri.baker}@colorado.edu)。当使用建议的放松 D. Christensen 时,ESS 同时充电和放电的直流 OPF 问题不是最优的,他是国家可再生能源实验室的成员,科罗拉多州戈尔登,80401 美国(电子邮件:dane.christensen@nrel.gov)
矿产资源的定量评估涉及在已知数据点之间进行插值和外推,这些数据点的范围多种多样,从正式的矿体估算到大陆(甚至全球)规模的评估。这些潜在矿化评估在充分了解可能存在的地质变化(这些变化在空间和数值上限制了已知数据点之间的计算信息)的情况下最为可靠。在矿床规模的资源估算中,可靠的地质或结构模型(主要来自钻井数据)限制了所使用的地质统计参数。在更大规模的潜在矿化评估中,钻井数据相对稀疏,必须使用区域规模的信息来补充当地矿床规模的信息。区域规模的输入通常必然更具概念性,但仍然应该与透明且可重复的统计数据和数据处理相关联,以便对潜在矿产资源进行尽可能好的大规模评估。与矿床规模的矿产资源地质统计估计类似,存在各种技术来评估更大规模数据点之间未采样的潜在矿化。已经有大量研究结合矿产潜力建模对矿化潜力的空间分布进行了研究。用于定量分析矿产资源的最成熟的技术是美国地质调查局在 1970 年代开发的技术,此后已用于世界各地的许多定量矿产资源评估,尽管铀矿很少使用。资源评估的“三部分方法”通常依赖于由良好、内部一致的特定矿床类型的地质模型控制的输入、这些矿床类型的品位和吨位的综合矿床统计数据,以及对这些矿床类型在明确界定的区域或允许地质条件下出现的可能性的良好理解(理想情况下使用矿产潜力建模)。国际原子能机构已经为这些建模技术制定了必要的参数,这些参数在 2018 年和 2019 年发布的各种出版物和数据库中进行了介绍。本出版物概述了包含省份(使用允许区域方法开发)的矿床模型以及根据必要的最终输入品位吨位模型计算出的品位和吨位参数。正文中的矿床模型是从附件中简化而来的,可在线作为单独的补充文件获取。信息以总结描述性矿床(和更广泛的矿物系统)表的汇编形式呈现,旨在用作每种矿床类型和矿床亚型的独立“数据表”。由于矿床亚型是矿床类型的衍生物,为了实现所需的独立格式,它们之间需要一定程度的重复。通过这些,成员国可以以一致和可重复的方式评估剩余的(或推测的)铀资源在已发现资源之外的长期供应潜力。由于从开始勘探到发现铀,再到开发和生产铀需要几十年的时间,而且目前已发现的资源不一定能充分开发,这些推测性资源是成员国长期能源规划战略的重要组成部分。负责本出版物的国际原子能机构官员是核燃料循环和废物技术司的 M. Fairclough 和 K. Poliakovska。
摘要:由于可再生能源发电广泛分布且受天气影响,可再生能源份额不断增长,使得电力系统模型中的功率流优化在计算上更加复杂。本文评估了两种降低具有存储扩展规划的输电网模型时间复杂性的方法。减少技术的目标是加速电网模型的线性最优功率流计算。这是通过选择少量代表性时间段来代表一整年来实现的。为了选择代表性时间段,使用层次聚类将按时间顺序相邻的小时或独立分布的耦合天聚合成时间序列聚类。通过目标值的误差和计算时间减少来评估聚合效率。此外,还分析了网络规模和并行计算效率对优化过程的影响。作为一个测试案例,考虑了德国最北部的石勒苏益格-荷尔斯泰因州的输电网,其情景对应于 2035 年。所考虑的情景的特点是安装的可再生能源份额很高。
摘要 — 本文介绍了一种数字孪生方法的增强功能,该方法可以模拟工作实践,例如有人驾驶飞机和无人机之间的交互;或跨空中控制机构消除繁忙战场冲突。我们的前提是,通过捕捉社会技术环境的工作实践,这种方法可以克服当前方法的局限性,这些方法无法正确模拟拒绝或中断的环境。我们扩展了数字孪生构造以捕获多个实体以及它们如何系统地交互和相互依赖。我们的工作以 Brahms 模型及其社会技术系统工作实践建模的基础理论为前提,但我们引入了一种现代计算引擎,将这种技术扩展到更广泛的数字孪生解释,从而可以支持更丰富的现实-模拟-现实循环,并更有效地支持训练、反思、学习和再次训练。我们回顾了 Brahms 方法以及我们对数字孪生模型的扩展如何应用于社会技术系统。我们讨论了 Brahms-Lite 并介绍了一种空战模拟应用。最后,我们讨论了如何更广泛地应用这项技术,以扩展数字孪生方法在正常和拒绝条件下对复杂环境的模拟。