为了了解电动总线的行为,开发了一个完整的系统模型,其中包括电池,电动机,动力电机,车辆动力学,安提洛克制动系统(ABS),再生制动器,范围,范围和控件等各种组件。使用所有关键子系统的状态空间动态表示形式开发了此模型,该模型允许工程师模拟和分析系统的行为不同输入驱动周期。团队还使用了关键输入,例如电机和电池的额定参数,电动机效率图,重量,驱动线/车轮参数等车辆规格等代表系统模型。EKA团队对从标准驱动周期和现实世界随机驱动周期数据获得的物理测试结果进行了彻底的验证。此验证增加了对模拟输出的置信度。
摘要对空间太阳能激光系统进行了模拟模型,以将功率传递到地球上。该系统由安装在卫星上的浓度系统组成的太阳能激光器组成。将所得的激光束重新定向到地球表面,在那里可以使用它来产生功率。计算激光的强度和差异是为了获得适当的太阳能激光系统作为匹配和陆地应用匹配的卫星上的有效载荷。根据我们的模型,当我们使用半径为5厘米,长度为10 cm的频率ND:YAG激光杆可以获得大约40 kW激光器,当我们使用直接太阳能泵送100 m的抛物线式泵送时,与3D-Cpc Ancoccal Ancoccal Ansance Ansance Ansance Ancectance Accom Accom Accom Accom Accom Accom Accom Accom Accom Accom Accom Accom Accom。
对于直接实现酉门的传统量子计算机来说,模拟描述非酉演化后量子系统真实相互作用的一般量子过程是一项挑战。我们分析了有前途的方法的复杂性,例如 Sz.-Nagy 膨胀和酉函数的线性组合,它们可以通过非酉算子的概率实现来模拟开放系统,这需要多次调用编码和状态准备预言机。我们提出了一种量子二酉分解 (TUD) 算法,使用量子奇异值变换算法将具有非零奇异值的 a 维算子 A 分解为 A = ( U 1 + U 2 ) / 2,避免了经典的昂贵的奇异值分解 (SVD),其时间开销为 O(d3)。这两个酉函数可以确定性地实现,因此每个酉函数只需要调用一次状态准备预言机。对编码预言机的调用也可以显著减少,但测量误差可以接受。由于TUD方法可以将非幺正算子实现为仅两个幺正算子,因此它在线性代数和量子机器学习中也有潜在的应用。
摘要:社区全球观测系统模拟实验(OSSE)包(CGOP)由美国国家海洋和大气管理局(NOAA)和联合卫星数据同化中心(JCSDA)开发,它提供了一种工具,可以定量评估新兴环境观测系统或新兴现场或遥感仪器对 NOAA 数值天气预报(NWP)预报技能的影响。OSSE 的典型第一步是模拟来自所谓自然运行的观测。因此,需要观测的空间、时间和视图几何来从自然运行中提取大气和表面变量,然后将其输入到观测前向算子(例如辐射传输模型)中以模拟新的观测。对于尚未建造仪器或尚未部署平台的新提出的系统来说,这是一个挑战。为满足这一需求,本研究引入了一个轨道模拟器,根据特定的托管平台和机载仪器特性计算这些参数,该模拟器由美国国家海洋和大气管理局卫星应用与研究中心 (STAR) 最近开发并添加到 GCOP 框架中。除了模拟现有的极地轨道和地球静止轨道之外,它还适用于新兴的近空间平台(例如平流层气球)、立方体卫星星座和苔原轨道。观测几何模拟器不仅包括被动微波和红外探测器,还包括全球导航卫星系统/无线电掩星 (GNSS/RO) 仪器。对于被动大气探测器,它计算不同平台上拟议仪器的几何参数,例如随时间变化的位置(纬度和经度)、扫描几何(卫星天顶角和方位角)和交叉轨道或圆锥扫描机制的地面瞬时视场 (GIFOV) 参数。对于 RO 观测,它确定卫星或平流层气球上的发射器和接收器的几何形状并计算它们的倾斜路径。该模拟器已成功应用于最近的 OSSE 研究(例如,评估未来地球静止高光谱红外探测器和平流层气球 RO 观测的影响)。
摘要 — 在量子力学细节层面模拟物理系统的时间演化——称为哈密顿模拟 (HS)——是物理学和化学领域一个重要而有趣的问题。对于这项任务,已知在量子计算机上运行的算法比传统算法快得多;事实上,这一应用促使费曼提出了量子计算机的构建。尽管如此,要达到这种性能潜力仍面临挑战。先前的工作重点是编译 HS 的电路(量子程序),目标是最大限度地提高准确性或门取消。我们的工作提出了一种同时推进这两个目标的编译策略。在高层次上,我们使用经典优化(例如图着色和旅行商)来排序量子程序的执行。具体而言,我们将哈密顿量(表征量子力学系统的矩阵)中相互交换的项组合在一起,以提高模拟的准确性。然后,我们重新排列每个组内的项,以最大限度地提高最终量子电路中的门取消。这些优化措施共同提高了 HS 性能,使电路深度平均减少了 40%。这项工作推动了 HS 的发展,进而推动了基础科学和应用科学领域的物理和化学建模。
在直流微电网 (dc MG) 中,直流链路电容器非常小,无法提供固有惯性。因此,在负载变化或电力资源波动的不确定波动期间会出现较大的电压偏差。这会导致电压质量下降。为了克服低惯性问题,本文提出了一种快速响应的能量存储系统,例如超级电容器,它可以通过某些特定的控制算法模拟惯性响应。双向直流-直流转换器用于将超级电容器能量存储连接到直流 MG。所提出的控制方案由虚拟电容器和虚拟电导组成。它在内环控制中实现,即电流环控制足够快地模拟惯性和阻尼概念。为了研究直流 MG 的稳定性,推导了一个全面的小信号模型,然后使用系统的根轨迹分析确定了可接受的惯性响应参数范围。通过数值模拟证明了所提出的控制结构的性能。
物质使用障碍是一种慢性疾病,也是世界各地导致残疾的主要原因。NAc 是介导奖励行为的主要大脑中枢。研究表明,接触可卡因与 NAc 中等棘神经元亚型 (MSN)、多巴胺受体 1 和 2 富集的 D1-MSN 和 D2-MSN 的分子和功能失衡有关。我们之前报道过,反复接触可卡因会在 NAc D1-MSN 中诱导转录因子早期生长反应 3 (Egr3) mRNA,而在 D2-MSN 中降低该mRNA。在这里,我们报告了在雄性小鼠中反复接触可卡因会诱导 Egr3 辅阻遏物 NGFI-A 结合蛋白 2 (Nab2) 的 MSN 亚型特异性双向表达的发现。使用 CRISPR 激活和干扰 (CRISPRa 和 CRISPRi) 工具结合 Nab2 或 Egr3 靶向的 sgRNA,我们模拟了 Neuro2a 细胞中的这些双向变化。此外,我们研究了雄性小鼠反复接触可卡因后 NAc 中组蛋白赖氨酸脱甲基酶 Kdm1a 、 Kdm6a 和 Kdm5c 的 D1-MSN 和 D2-MSN 特异性表达变化。由于 Kdm1a 在 D1-MSN 和 D2-MSN 中表现出双向表达模式,就像 Egr3 一样,我们开发了一种光诱导的 Opto-CRISPR-KDM1a 系统。我们能够下调 Neuro2A 细胞中的 Egr3 和 Nab2 转录本,并引起与我们在小鼠反复接触可卡因模型的 D1-MSN 和 D2-MSN 中观察到的类似的双向表达变化。相反,我们的 Opto-CRISPR-p300 激活系统诱导了 Egr3 和 Nab2 转录本并引起相反的双向转录调控。我们的研究揭示了可卡因作用中特定 NAc MSN 中 Nab2 和 Egr3 的表达模式,并使用 CRISPR 工具进一步模拟这些表达模式。
成功的能源系统规划依赖于详细的电力需求信息。特别是在发展中国家,预先生成的负载曲线通常不合适,因为电器的所有权和使用情况在跨境、城乡之间以及家庭和行业层面存在很大差异。由于成本障碍、全球不可用或所需的技术知识,合成负载曲线通常受到工具无法访问的阻碍。由于目前,在发展中国家农村地区的能源系统规划中没有易于使用的工具,我们将开源负载曲线生成器 RAMP 整合到我们的基于 Web 的能源系统模拟器 NESSI4D web+ 中,以提供直观的用户界面。我们使用从斯里兰卡一家宾馆自行收集的数据进行适用性检查,分析负载分布和幅度对经济、环境和可靠能源供应的影响,验证了该工件的相关性和赋予当地决策者权力的能力。