本手册主要是 Martin Doran 的成果,他花了两年时间编写。他从 ILCA 科学家的知识、技能和帮助中汲取了大量经验,因此作者被归为整个 ILCA,而不是任何个人。尽管如此,Martin Doran 几乎起草了手册的每一个字。他这样做得到了 Stephen Sandford 的总体支持,后者作为畜牧政策和资源利用推进项目的协调员,对手册的几乎每个部分进行了反复审查和评论。第三位主要贡献者是 Inca Alipui。她在增加清晰度和准确性方面发挥了重要作用,并使手册更易于阅读,远远超出了语言编辑的正常职责。
数据记录器是实现数据记录和回放功能的系统,由数据采集部分、数据存储部分和数据回放部分组成[1-2]。目前,数据记录器已广泛应用于需要后期数据分析处理的航空航天、遥感、现代电子测试等许多重要领域[3]。机载飞行数据记录器一般称为黑匣子数据记录器(FDR),是一种用于记录飞行过程中各种状态参数的高性能机载电子设备。随着科学的不断发展,实际应用对飞行数据记录器的需求越来越大。早期市场上采用磁带作为存储介质的机载飞行数据记录器由于其记录速度低、不支持要存储的数据的文件格式等原因,已经不能满足大多数应用的要求。因此,设计一种具有高速记录、低功耗、数据以文件形式实时存储的机载飞行数据记录器具有重要的意义和研究价值。
Balan 将构建一个优化的大规模麦克风阵列,允许空间音频选择。该系统将专注于目标源,同时抑制来自各种位置的干扰。它将允许用户收听选定的目标源,即使该目标源被移动且数量超过传感器数量的干扰源包围。该系统将处理声波和电磁波形,以发现这些多路径、嘈杂环境中源的数量和位置,然后通过消除或减弱干扰并识别先前识别的源来分离每个源。该技术将使用最先进的优化和统计建模技术优化传感器的放置和处理。
容错可应用于三个层面——硬件、软件和系统(用户界面)。这三个层面都容易受到设计、实施或维护错误的影响——人为错误以硬件、代码或用户界面故障的形式存在,并体现在系统行为中。硬件在这三个层面中是独一无二的,因为它容易“磨损”和损坏。传统的容错可以补偿计算资源(硬件)的故障。通过管理额外的硬件资源,计算机子系统提高了其持续运行的能力。确保硬件容错的措施包括冗余通信、复制处理器、额外内存和冗余电源 / 能源供应。这种冗余的管理通常涉及使用软件。硬件容错在计算发展的早期尤为重要,因为当时机器故障之间的时间以分钟为单位。
有三个级别可以应用容错功能 - 硬件、软件和系统(用户界面)。所有三个级别都容易受到设计、实施或维护错误的影响 - 人为错误以硬件、代码或用户界面中的故障形式存在,并体现在系统行为中。硬件在这三个级别中是独一无二的,因为它容易“磨损”和损坏。传统的容错可以补偿计算资源(硬件)中的故障。通过管理额外的硬件资源,计算机子系统可以提高其持续运行的能力。确保硬件容错的措施包括冗余通信、复制处理器、额外内存和冗余电源/能源供应。这种冗余的管理通常涉及软件的使用。硬件容错在计算机发展的早期尤为重要,当时机器故障间隔时间以分钟为单位。
本报告是作为美国政府机构赞助工作的记录而编写的。美国政府及其任何机构及其任何雇员均不做任何明示或暗示的保证,也不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
工作执行者:Eduard Eloy Maurel 指导者:Manuel Valdés López 学位:建筑工程巴塞罗那,2013 年 5 月 22 日建筑工程系 (EC)
