本说明描述了《联合国气候变化框架公约》(UNFCCC)与政府间气候变化(IPCC)(IPCC)以及其他与IPCC工作相关的活动,特别是在设计其第七次评估周期(AR7)时,自2023年11月2023年11月的最后更新时,UNFCCC的活动现在集中在计划从2024年3月3日至13日在德国波恩举行的子公司六十月会议的准备工作(SB60),包括有关研究对话或关于潜在主题和组织的提交,应截至2024年3月15日。1。IPCC参与COP 28,IPCC在阿拉伯联合酋长国迪拜举行的COP 28上以几种方式参与了:主题演讲是IPCC主席,Jim Skea在11月30日星期四在COP开幕全体会议上发表了主题演讲,在12月3日星期日的地球信息日(开斋节)全体会议上,而IPCC秘书Abdallah Moksit,IPCC秘书向党会(COP)的共同全体会议(COP)举行的会议,分会派对的共同全体会议,分为一会儿,该会议是一场比赛。 (CMP),当事各方会议是巴黎协定当事方(CMA),科学和技术建议的子公司(SBSTA)和辅助机构实施机构(SBI)的会议。 b。 Earth Information Day 2023 EID,12月3日星期日举行的1月1日,提供了关于全球气候系统状况和系统观察状况发展的信息的对话,以支持实施《巴黎协定》。IPCC参与COP 28,IPCC在阿拉伯联合酋长国迪拜举行的COP 28上以几种方式参与了:主题演讲是IPCC主席,Jim Skea在11月30日星期四在COP开幕全体会议上发表了主题演讲,在12月3日星期日的地球信息日(开斋节)全体会议上,而IPCC秘书Abdallah Moksit,IPCC秘书向党会(COP)的共同全体会议(COP)举行的会议,分会派对的共同全体会议,分为一会儿,该会议是一场比赛。 (CMP),当事各方会议是巴黎协定当事方(CMA),科学和技术建议的子公司(SBSTA)和辅助机构实施机构(SBI)的会议。b。Earth Information Day 2023 EID,12月3日星期日举行的1月1日,提供了关于全球气候系统状况和系统观察状况发展的信息的对话,以支持实施《巴黎协定》。除了上述事件开幕式的IPCC主席在开幕式上发表了主题演讲外,IPCC联合主席和工作组I,II和TFI的作者介绍了地球观测,适应和预警系统的重要性和使用。许多IPCC同事也参加了EIDWorldCafé活动的各种角色,该活动为系统观察社区与数据和信息最终用户之间直接交流信息提供了机会。
1 执行摘要。..............................11 1.1 国情 ...........................11 1.2 温室气体清单信息 ................14 1.3 政策措施 .............................16 1.3.1 政策制定过程 ........................16 1.3.2 部门政策和措施 ........。。。。。。。。。17 1.3.2.1 能源部门。。。。。。。。。。。。。。........17 1.3.2.2 其他部门 ....................18 1.3.3 税收和补贴 ....................20 1.3.4 研究与开发。.................21 1.3.5 经济影响 ........................21 1.4 政策和措施的预测与评估。.....22 1.4.1 “有措施”情景。....................22 1.4.1.1 起点和假设 ........22 1.4.1.2 能源和电力总消耗 ....................。。。23 1.4.1.3 温室气体排放。。。。。。。。。。。。。。24 1.4.2 “采取额外措施”情景 .........25 1.4.3 方法论 ..............................27 1.5 气候变化的影响、适应和脆弱性 .....28 1.5.1 观测到的气候变化和情景 ........28 1.5.2 气候变化的影响 ..................29 1.5.3 适应和脆弱性。...............29 1.6 资金和技术转让。..........30 1.7 研究和系统观察。.................32 1.8 教育、培训和公众意识。.....。。。。。。。。。33
我们试图识别和定量分析草酸钙(CAOX)肾结石在微米的顺序上,重点是对草酸钙一水合物(COM)和二水合物(COD)的定量鉴定。我们进行了傅立叶变换红外(FTIR)光谱,粉末X射线衍射(PXRD)和微焦点X射线计算机计算的Tomogra-Phy测量(微孔X射线CT),并比较其结果。集中于780 cm-1峰的FTIR光谱的扩展分析使得对COM/COD比率进行可靠的分析成为可能。,我们通过将微观FTIR应用于肾结石的薄部分,并通过将Microtocus X射线CT系统应用于批量样品,从而成功地分析了50-μm2区域的COM/ COD。基于微采样的PXRD测量结果,薄节的微观FTIR分析以及微孔X射线CT系统观察散装肾结石样品的结果大致一致,表明所有三种方法都可以在智力上使用。这种定量分析方法评估了保留的石头表面上的详细CAOX组成,并提供了有关石材形成过程的信息。此信息阐明了哪些晶体相核的位置,晶体的生长方式以及从亚稳态相位到稳定相的过渡如何进行。相变会影响肾结石的生长速率和硬度,因此为肾结石形成过程提供了关键的线索。
摘要:解决当前地球系统观察策略中国家科学,工程和医学学院确定的关键差距,2017 - 27年对地球科学的十年际调查以及来自空间推荐的孵化概念,以培养未来目标可观察物的概念,包括大气行星层(PBL)。随后的NASA PBL孵化研究团队报告确定了测量要求和活动,以提高适用于PBL有针对性可观察到的技术及其相关科学和应用优先级的技术的成熟度。虽然PBL是人类生活和表面能量,水分和质量交换的关键层,但它也是Spaceborne仪器的最远,最无法接近的层。在这里,我们记录了PBL检索系统模拟实验(OSSE)框架,适用于评估现有和新的测量技术,并确定它们的准确性和改进,以满足升高的十年录取调查要求。尤其是,大型模拟(LES)的益处被强调为关键PBL状态的高分辨率合成观察的关键来源:从热带地区到亚热带和中间次数,到亚极和极性区域。使用六个仪器模拟器探索了基于LES的PBL检索OSSES的潜力:全球导航卫星系统 - 拉迪奥固执,差异吸收雷达,短波红外光谱仪,红外光谱仪,多角度成像光谱仪和微波炉声音。讨论了LES在PBL检索OSSE中的关键作用和仪器发展的一些观点。
标题:十种人体工程学风险评估方法的比较研究杂志:高级结构化材料,第174卷,2022年。Document Type: Book Chapter Authors: Mohamad Rashid Mohamad Rawan, Mohd Amran Mohd Daril, mamran@unikl.edu.my Khairanum Subari, khairanum@unikl.edu.my Mohamad Ikbar Abdul Wahab mikbar@unikl.edu.my Full text link: UniKL IR : https://ir.unikl.edu.my/jspui/handle/123456789/28058 Publisher : https://www.springerprofessional.de/en/a-comparative-studies-of-ten-ergonomics-risk- assessment-methods/23113842 Scopus preview: https://www.scopus.com/record/display.uri?eid=2-S2.0-85131305457&doi = 10.1007%2F978-3-031-0141488888_15与工作相关的肌肉骨骼疾病或WMSD最常引用在与重复,过度武力,振动,接触应力和尴尬姿势的危险因素有关的各种研究中。下背部,颈部,前臂,手腕,手,肩膀和肘部是受这些WMSD影响的最常见的身体区域。科学文献表明,WMSD的最佳预防是减少对风险因素的接触。换句话说,应评估WMSD的危险因素,尤其是在工作区域,以确保工人与WMSD的风险因素的相互作用较少。WMSD的风险因素的评估可以分为三类,主观判断,直接测量和系统观察。基于审查,测量是确定WMSD风险因素的最准确和可靠的方法,但是它需要大量资源投资,而观察方法是人体工程学家使用的最常见方法。与识别危险因素的其他方法相比,观察方法比较容易且成本较低。在收集实际站点中的数据时,这也是最灵活的方法。该研究的目的是获得该方法之间的比较结果,以确定预防WMSD中最有效的人体工程学风险评估。尽管人体工程学从业人员,职业治疗师,雇主,工会工人以及健康与安全部门需要有关可预防WMSD的最有效评估方法的信息,但文献仍然很少提供应用研究,这些研究已经测试了这些方法进行比较,并且缺乏有关哪些方法是防止WMSD的最佳方法。人体工程学从业人员之间也没有任何论点,因为选择的最佳方法是开发与任务相关的实验并比较各自的结果。
・东盟生物多样性中心(2023)。东盟生物多样性前景3。从https://abo3.aseanbiodiverity.org/・Baloloy A.B.检索等。(2023)。绘制菲律宾的多年红树林变化:植被范围以及与人类和气候相关因素的影响。in:Leal Filho,W.,Kovaleva,M.,Alves,F.,Abubakar,I.R。(eds)气候变化策略:处理适应不断变化的气候的挑战。气候变化管理。Springer,Cham。 https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。Springer,Cham。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。(2023)。不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。in icimod(P. Wester等人[eds。]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。123–163)。icimod。https://doi.org/10.53055/icimod.103 ・Corcino R.等。(2023)。菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。海洋科学区域研究(2024)。一个监测保护区和其他基于区域的保护措施的生物多样性的框架。IUCN WCPA技术报告系列7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。(2023)。(2023)。Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。全球生物多样性观察系统,以团结监测和指导行动,《自然生态与进化》第7期,第2173页。https://doi.org/10.1038/s41559-023-023-02263-x,环境科学领域,11。https://doi.org/10.3389/fenvs.2023.1281536 ・Hughes A.C.(2023)。帖子 - 2020年全球生物多样性框架:我们是如何到达这里的,下一个我们要去哪里?综合保护2(1)1-9。 https://doi.org/10.1002/inc3.16 ・ icimod(2023)。印度教库什·喜马拉雅山的水,冰,社会和生态系统:看法。(P. Wester,S。Chaudhary,N。Chettri,M。Jackson,A。Maharjan,S。Nepal&J.F。Steiner [eds。]。icimod。https://doi.org/1053055/icimod.1028 ・Kass J.等。 (2023)。 生物多样性建模的进步将改善对大自然对人的贡献的预测。 生态与进化的趋势。 https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/1053055/icimod.1028 ・Kass J.等。(2023)。生物多样性建模的进步将改善对大自然对人的贡献的预测。生态与进化的趋势。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。(2023)。生态系统的红色列表,西方珊瑚三角的红树林。ecoevorxiv。https://doi.org/10.32942/x21k5p ・Mori A.S.等。(2023)。可持续性挑战,机会和解决方案,用于长期生态系统观察。皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。(2023)。审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。等。(2024)。(2023)。生态与环境杂志(印刷中)・蓬普特A.J.靶向站点保护以提高新的全球生物多样性目标的有效性,一个地球,7(1):11-17。 https://doi.org/10.1016/j.oneear.2023.12.007。salmo,S。G.等。联合国在生态系统恢复的十年中的东南亚红树林。海洋科学领域。https://doi.org/10.3389/fmars.2023.1341796 ・Shin N.等。(2023)。在1807 - 1838年的Kakuson日记中,来自日本Kanazawa的采矿植物物候记录。国际生物气象学杂志。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。 (2024)。 观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解? 正面。 环境。 SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。(2024)。观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解?正面。环境。SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。SCI。12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。(2024)。在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。正面。维持。旅行。3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。12。在线。https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://www.biodiverity-science.net/cn/article/shownewarticle.do。▶生活世界特刊,2023年。08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。・ Trisurat Y.等。(2023)。(2023)。气候变化对泰国的物种组成和植物区域的影响。多样性15,1087。https://doi.org/10.3390/d15101087 wee A.等。在东南亚红树林恢复中进行环境DNA(EDNA)的前景和挑战。海洋科学领域。https://doi.org/10.3389/fmars.2023.1033258演示材料都可以通过Apbon网站访问:http://wwwww.esabii.biodic.go.go.go.jp/ap-bon/ap-bon/index.htex.htex.htex.html