- TO 的 LSP 项目与 ISO-NE 区域系统计划项目列表相关联,该项目包含由 ISO 发起的包含区域和本地组件的项目。该项目公开列出于:https://www.oasis.oati.com/woa/docs/RIE/RIEdocs/2023 LSP.pdf
2.1.4. 当在近期规划期内计划发生发电或输电设施的已知停电时,应评估选定的已知停电对系统性能的影响。规划协调员或输电规划人员应根据记录的停电协调程序或技术原理选择这些已知停电进行评估。不得仅根据停电持续时间排除已知停电。应针对表 1 中确定的 P0 和 P1 类别进行评估,并考虑系统在计划发生已知停电时预计会经历的系统高峰或非高峰条件。此评估应至少包括预计会对规划协调员或输电规划人员的 BES 部分产生更严重系统影响的已知停电。如果研究具有可比的应急后系统条件,过去或当前的研究可能支持选择已知停电,并且
氢气价格 E3 使用太阳能发电量(根据上述可再生能源和电池存储成本,混合亚利桑那州和犹他州)、碱性电解槽制氢(根据加州能源委员会出版物 CEC-500-2019-055 中的乐观和保守成本下降)、氢气存储(使用能源部项目 ST-001 中的成本)和氢气运输(混合亚利桑那州和犹他州的运输成本,使用阿贡的氢气交付情景分析模型 (HDSAM) 工具)开发的绿色氢气预测。通货膨胀削减法案中的 3 美元/千克氢气生产税收抵免适用于 85% 的货币化。天然气价格美国能源信息署 (EIA) 2021 年 AEO“参考”案例,基于 SRP 的天然气供应进行区域划分水力可用性在当前干旱条件下,水力容量和能源可用性保持相对稳定。市场支持由于近期产能限制,采取行动以收缩最大市场容量至 2032 年;之后 525 兆瓦的市场潜力可用。沙漠繁荣
电池储能和多种类型的分布式能源资源建模 2022 年 12 月 执行摘要 NERC 系统规划对分布式能源资源的影响工作组 (SPIDERWG) 调查了新技术类型快速集成到配电系统中可能带来的建模挑战。SPIDERWG 权衡了更新或更改推荐的建模框架,发现之前的建模指导在 T-D 接口上面对两种或多种主要技术类型的分布式能源资源 (DER) 时仍然有效。此外,SPIDERWG 确定控制行为而不是燃料源更适合瞬态动态参数化。这并不妨碍根据特定研究应用的需要将 DER 分为两组或多组基于燃料源的动态瞬态模型。1 SPIDERWG 还为输电规划人员 (TP) 或规划协调员 (PC) 提供了一组健全性检查,以使用两个或更多个聚合动态模型来捕获 T-D 接口后面的全部 DER。SPIDERWG 在对 T-D 接口后面的多种主要控制类型进行建模时提出了建议(请参阅建议)。目的由于技术和监管政策的快速变化,电网格局也在不断发展。本白皮书强调了充分建模分布式电池储能系统 (BESS) 和其他形式的分布式储能与当前 DER 安装中盛行的太阳能光伏 (PV) 系统的重要性。全国范围内 DER 的更高部署最近增加了配电连接 BESS 的应用,因为它们可以补充有限、不可调度、可变和间歇性的 DER。BESS 还可应用于配电系统以实现其他目的,例如降低客户需求费用、管理分时费率、客户备用电源以及参与能源和辅助服务市场。BESS 可与可变 DER 结合使用或作为独立存储应用,可以改善系统运行、规划和效率,并可作为可靠且重要的应急准备来源。本白皮书分享了行业在 DER BESS 和其他形式的分布式储能建模方面的经验,重点介绍了行业最佳实践,讨论了从 DER BESS 研究中吸取的经验教训,并重点介绍了行业软件和工具中的模型应用和参数化。白皮书还提供了在 SPIDERWG 推荐的建模框架下参数化不同技术类型的潜在建模实践。
通常,全日制或非全日制学习两年,但全日制学习也可以在一年内完成。课程由八个为期一周的模块组成,每个模块有 40 小时的接触时间,另外还有 110 小时的远程教育工作。成功完成所有模块后,将进行论文项目,论文项目也可以与模块同时进行,具体取决于时间安排。每个模块有 15 个学分,项目有 60 个学分(说明见附录 A)。
摘要 —气候变化可能会增加一个地区遭受多重极端天气事件袭击的风险,这给可再生能源渗透率不断提高的时代配电系统规划人员带来了重大挑战。迫切需要规划方法更加灵活,并允许在未来进行自适应调整,以对冲极端天气事件情景中的高度不确定性。在这项工作中,我们提出了一种考虑多种极端天气事件的弹性导向配电系统规划方法。开发了一种多阶段混合随机稳健公式,不仅可以为初始投资建模决策,还可以为响应特定极端事件的自适应投资和紧急运营建模决策,同时考虑长期和短期不确定性。我们的模型通过一种新颖的渐进式对冲算法求解,该算法嵌入了嵌套列和约束生成方法。案例研究证明了所提出的方法在制定灵活且经济实惠的规划决策以保护配电系统免受多种极端天气事件的影响方面的优势。
简介加州交通部 (Caltrans) 致力于在加州全境增加管理车道的使用。管理车道是专用或优先使用车道,它采用各种操作和设计策略以不断实现最佳状态。管理车道采用出入控制、车辆资格和收费等运营策略或其组合。这些策略是根据州和地区对交通系统的目标和目的确定的,包括但不限于安全、区域和区域间一致性、对高速公路性能的影响、执法需求、可持续性考虑和社区支持。策略可能会随时调整以满足所需的性能标准或解决其他管理车道或高速公路性能问题。管理车道包括以下内容:
摘要:本文提出了一种风险规避随机规划模型,用于混合电力系统 (HEES) 的最佳规划,并考虑了巴西配电系统的监管政策。通过定义场景,考虑了与光伏 (PV) 发电、负荷需求、柴油发电燃料价格和电价相关的变量的不确定性。优化问题中使用条件风险价值 (CVaR) 指标来考虑消费者的风险倾向。该模型确定了光伏板、柴油发电和电池存储容量的数量和类型,其目标是在规划期内最小化投资和运营成本。进行了涉及大型商业消费者的案例研究,以评估所提出的模型。结果表明,在正常条件下,只有光伏系统是可行的。对于风险规避型消费者来说,光伏/柴油系统往往在恶劣的水文条件下是可行的。在这种情况下,光伏/电池系统是可行的,可将电池投资成本降低 87%。一个重要的结论是,风险分析工具对于协助消费者投资HEES的决策过程至关重要。