使用可再生能源发电 (REG) 和储能系统 (ESS) 策略在为可再生能源 (RES) 提供弹性方面具有相当大的可能性。因此,结合 REG 和 ESS 策略来解决运营、经济、生态和电力相关的政府问题已受到全球电力系统 (PS) 运营商和规划人员的特别关注。在这方面,传统能源资源匮乏的发展中国家(约旦)提出了不同的支持问题和经验,以便在配电 PS 的情况下共同使用 ESS 策略。因此,本文对这一问题进行了通用解决方案,必须大量建设基础设施,以实现可再生能源在 PS 中的高渗透率。基于此,本文首先研究了在基于 RE 的配电 PS 中使用 REG 和 ESS 策略的必要性。因此,提供了各国当前用于以 ESS 和 REG 策略的最佳组合发展 RER 的方法和激励计划。这项研究的结果表明,ESS 的使用对于住宅太阳能 (SE) 应用的管理和开发非常重要。大多数受访者(85.3%)表示,使用家用储能系统对于可再生能源需求和供应的管理和增长至关重要。为了提高主电网效率并减少对传统电源的需求,约旦工程师和专家建议消费者在家中安装储能系统设备。
本文提出了独立的混合动力系统(HP)的最佳控制策略,以向孤立的站点提供可持续和最佳的能量,并具有提高的电能质量。A topology of Isolated Hybrid Power System (IHPS) is proposed, consists of: a Photovoltaic System (PVS), a Wind Energy Conversion System (WECS), electronic power devices controlled to maximize energy production from renewable sources and to maintain the constant DC-link voltage, a Battery Energy Storage System (BESS), Diesel Generator (DG), and a Pulse Width Modulation (PWM)电压源逆变器(VSI)位于负载端端。此外,在这项工作中,已经提出了一种新颖的控制策略,以最大程度地发挥PVS的功率。基于扰动和观察(P&O)算法和模糊PI控制器(FPIC)之间的组合,这种提出的策略表现出色,尤其是与经典算法P&O相比的动态状态。已详细阐述了一种监督控制算法,以管理混合系统设备之间的能量流,以确保最少使用电池和DG使用的负载持续供应。在MATLAB/SIMULINK环境中开发的仿真结果用于显示拟议控制策略在功率优化和能量管理方面的效率和性能。
学科领域知识领域:14 个“电气工程”和 17 个“电子、自动化和电子通信”。专业:141个“电力工程、电气工程和机电工程”(50%)和176个“微与纳米系统工程”(50%)。研究和活动对象: - 可再生能源电能的生产、传输、分配和消费过程;可再生能源微纳米系统设备制造的操作原理和工艺流程;可持续能源技术。 - 能源领域的科研机构、设计机构和组织、电力和电气工程综合企业、电气工程公司。学习目标:培养解决设计和运行可持续可再生能源系统的实际任务和科学问题的能力;研究可再生能源微纳米系统技术的材料和器件的现有技术和开发新技术。学科领域的理论内容:可再生能源电力系统运行模式建模、分析和优化的基本原理和方法;可再生能源微系统和纳米系统技术的构建和功能基础。方法、技术和技术:使用专门设备和计算机设计、建模电力设施和系统的运行和控制,测量和建模可再生能源材料、设备和系统的特性。仪器和设备:微和纳米系统工程的电气仪器和设备、控制和测量仪器、计算机设备、用于计算参数和建模电气和微电子系统的软件、项目文档的开发和维护。
考虑一个量子测量机器的一般显微镜模型,该模型包含量子探头与热水浴的耦合,我们分析了实现量子测量所需的能量资源,其中包括产生系统设备相关性,不可逆的tran tran- tran-统计混合物的确定性混合物,以及确定的静止 - 以及一个光明的复合。至关重要的是,我们没有诉诸其他量子措施来捕获objective测量结果的出现,而是利用热浴的特性,从而重新记录了测量的自由度,从而自然地实现了量子达尔文主义的范式。在实践中,该模型允许我们对序列过程进行Quantative的热力学分析。从第二定律的表达中,我们展示了最小的重新工作工作如何取决于所测量的系统的能量变化加上信息的理论数量 - 表征了测量的效果 - 效率和完整性。另外,我们表明可以执行热力学可使用的测量,从而达到最小的工作支出,并提供响应方案。最后,对于有限的时间测量协议,我们说明了有限的热电学过程中固有的熵产生的上升产生所引起的侵扰工作成本。这重点介绍了测量速度和工作成本的速度之间的出现,除了测量和工作成本的效率之间的权衡。我们将这些发现应用于测量驱动量子发动机的热力学平衡中的新见解。
I. 引言 在当今世界,便携性已经成为一个非常重要的因素;世界一直在寻找新的和创新的方式来为我们的生活增添舒适。在任何地方都可能发生的最令人沮丧的事情之一就是发现你的手机或任何数码设备在你最需要的时候没电了。移动电源是一种便携式充电设备,可以为一些特定的电子设备充电,这些设备随时通过 USB 充电。移动电源为电子设备供电,同时将电能存储在电池中,当任何传统电源断电时,电池可用作备用电源。移动电源的概念越来越流行,因为它已经成为一种需求,而且由于数码产品的快速增长,它的需求也在不断增加。便携式充电器体积小巧,便于携带,十分方便。由于全球经济增长非常迅速,人们携带的便携式电子产品越来越多,例如手机、摄像机、笔记本电脑、数码相机、平板电脑、便携式播放器(如 MP3 播放器、PDA、全球定位系统设备、DVD 播放器、MP4 播放器)、热设备、医疗保健设备等。人们已经对科技如此上瘾,以至于他们几乎无法没有科技。同样,数码设备在连续使用的情况下,没有足够的电量来维持一整天。解决这一新兴挑战的方法是不断研究和开发移动电源等新技术。移动电源必须具有短路、电池过充和过放、热关机和其他电源问题的保护措施。这应该通过高性能电源管理技术来实现。
摘要 - 本文介绍了智能助理机器人的开发,该机器人由嵌入式系统设备授权,能够有效地管理餐厅,银行,房屋和其他业务空间等各种环境。该系统围绕基于微控制器的语音通信模块设计,以与传感器和智能设备进行语音通信。其中包含了几个尖端软件程序,以识别面部,组织职责并响应特定的查询和请求。为了控制房屋及其各种应用程序,嵌入式系统用作本地服务器。通过此中央控制,机器人展示了广泛的活动,以多种方式迎合客户查询。这些响应可能包括口头交互,表达性手势或执行特定的软件任务,所有这些响应都是为了确保令人满意的用户体验而量身定制的。机器人行动的多功能性有助于其在处理客户需求和提高整体运营效率方面的有效性。通过利用嵌入式系统设备的功能并采用先进的软件算法,本文展示了智能机器人技术在革新各个行业中的潜力。Smart Assistant机器人能够无缝沟通,理解和响应人类互动的能力为增强客户服务,简化操作和提高的生产率铺平了道路。结果表明,机器人可以为响应客户查询而采取的各种活动。执行的操作可以是口头响应,手势或任何类型的软件任务。
AC 交流电 ACP 美国清洁能源 AFCEC 空军土木工程中心 ANSI 美国国家标准协会 APUA 安提瓜公共事业管理局 ASCE 美国土木工程师学会 ASHRAE 美国采暖、制冷与空调工程师学会 ASTM 美国材料与试验协会 AWEA 美国风能协会 BESS 电池储能系统 CORE 持续优化的可靠能源 DC 直流电 DERs 分布式能源 DIN 德国标准化协会 EMC 电磁兼容性 EPC 工程采购施工 EPS 电力系统 ESS 储能系统 GHG 温室气体 ICC 国际规范委员会 ICS 工业控制系统 IEC 国际电工委员会 IEEE 电气电子工程师协会 IRP 综合资源计划 ISE 互连系统设备 ISO 国际标准化组织 NABCEP 北美认证能源从业者委员会 NAVFAC 海军设施工程系统司令部 NEC 国家电气规范 NEMA 美国电气制造商协会 NERC 北美电力可靠性公司 NFPA 美国消防协会 NIST 国家标准与技术研究所 NREL 国家可再生能源实验室NSC 加拿大国家标准 O&M 运行与维护 OECS 东加勒比国家组织 OSHA 职业安全与健康管理局 PCE 电力转换设备 PID 电势诱导衰减 POCC 公共耦合点 PPA 购电协议 PV 光伏 PVC 聚氯乙烯
NAVSEA 标准项目 FY-27 项目编号:009-086 日期:2024 年 10 月 1 日 类别:II 1。范围:1.1 标题:臭氧消耗物质 (ODS) 的回收和上交;完成 2。参考: 2.1 49 CFR 第 173 部分,装运和包装的一般要求 2.2 国防部 ODS 储备客户上交程序,国防后勤局,日期为 2021 年 2 月 3。要求: 3.1 回收附件 A 中列出的未回收到从中移除它们的特定系统设备中的氯氟烃 (CFC) 和 HCFC-22 制冷剂和哈龙材料,如下所示: 3.1.1 在运输完整的气瓶之前,必须停用带有电荷或引发剂的灭火(哈龙)气瓶和罐,并使用安全盖覆盖暴露的执行机构和排放口。3.1.2 回收其他哈龙和 CFC 材料,以便上交至位于弗吉尼亚州里士满国防仓库 (DDRV) 的国防部 ODS 储备。除非活动在日本、夏威夷或加利福尼亚州圣地亚哥进行,否则所有上交物都必须归还给 DDRV。必须使用空气瓶来回收材料。可以通过正常的 MILSTRIP 库存订购程序从 DDRV 申请空回收气瓶。用于回收制冷剂的 DDRV 气瓶涂成橙色,而哈龙则涂成红色。两者都有黄色顶部和双端口(两个阀门),以区别于单端口阀门标准规格气体(原始)气瓶。3.1.2.1 不要将新材料与用过的材料混合,也不要在同一气瓶中混合不同类型的材料。3.1.3 确保回收材料气瓶已贴上标签。标签应放置在气瓶保护盖下方或牢固地固定在容器上。请勿在圆柱体上印刷模板。标签必须包含以下信息:
摘要过去,该国的某些发电厂利用湿冷却系统从涡轮机中凝结蒸汽,这主要是由于诸如丰富的水资源,无限制地获得地下水储量以及有限的城市发展的因素。但是,随着当前的水危机和与湿冷却系统相关的高水消耗,热电厂的开发商越来越选择干燥冷却塔。本文的重点是市区的特定蒸汽热电厂,考虑了从湿冷却系统的过渡。将从技术,经济,化学和环境角度分析过渡。最初,将使用Thermoflow软件版本23模拟蒸汽发电厂的热力学周期。随后,各种全球冷却系统将被评估为现有湿冷却系统的潜在替代方法。设计和建模冷却系统的关键方面涉及确定最佳温度,这将基于气象数据,特定于位置的考虑因素,技术和经济因素以及每个替代方案的仿真结果。此外,将根据冷却系统类型,热表面材料和系统设备评估水和蒸汽周期的化学控制状态。发电厂也受到这种水短缺的影响,导致容量降低,偶尔无法以最高效率运行。因此,发电厂越来越多地使用替代冷却系统,这些冷却系统较少依赖于水的消耗,例如干塔。几家发电厂,包括伊斯法罕,哈姆丹,塔拉什特,巴斯特和蒙顿盖伊·卡姆(Qaim),已经承认了这个问题,并正在采取必要的措施来解决它。最后,使用Thermoflow软件和地热数据,用新的干式ACC循环代替了旧的湿冷却塔,并评估了这种变化对循环和发电厂性能特征的影响。此外,还进行了环境,化学和经济评估,以分析拟议周期的其他方面及其可行性。
NAVSEA 标准项目 FY-24 项目编号:009-86 日期:2022 年 10 月 25 日 类别:II 1. 范围:1.1 标题:臭氧消耗物质 (ODS) 的回收和上交;完成 2. 参考: 2.1 49 CFR 第 173 部分,装运和包装的一般要求 2.2 国防部 ODS 储备客户上交程序,国防后勤局,日期为 2021 年 2 月 3. 要求: 3.1 回收附件 A 中列出的未回收到它们被移除的特定系统设备中的氯氟烃 (CFC) 和 HCFC-22 制冷剂和哈龙材料,如下所示: 3.1.1 在装运完整的气瓶前,必须停用带电或引发剂的灭火(哈龙)气瓶和罐,并使用安全盖盖住暴露的执行机构和排放口。 3.1.2 回收其他哈龙和 CFC 材料,上交至位于弗吉尼亚州里士满国防仓库 (DDRV) 的国防部 ODS 储备处。除非活动发生在日本、夏威夷或加利福尼亚州圣地亚哥,否则所有上交物都必须退还给 DDRV。必须使用空气瓶来回收材料。可以通过正常的 MILSTRIP 库存订购程序从 DDRV 申请空回收气瓶。用于回收制冷剂的 DDRV 气瓶涂成橙色,而哈龙涂成红色。两者都有黄色顶部和双端口(两个阀门),以区别于单端口阀门标准规格气体(原始)气瓶。3.1.2.1 不要将新材料与旧材料混合,也不要在同一气瓶中混合不同类型的材料。3.1.3 确保回收材料气瓶已贴上标签。标签应放置在气瓶保护盖下方或牢固地固定在容器上。不要在气瓶上刻字。标签必须包含以下信息: