摘要:本文提出一种机电暂态法,建立适用于大规模电网的基于电池储能系统的虚拟同步发电机模型。该模型由虚拟同步发电机控制、系统限制和模型接口组成。还考虑了二阶同步机的方程、充电/放电功率特性、荷电状态、运行效率、死区和逆变器限制。通过将储能变换器配备为具有励磁系统和调速系统的近似同步电压源,为具有低惯性和弱阻尼的可再生能源电力系统提供必要的惯性和阻尼特性。基于电力系统分析软件包(PSASP)的节点电流注入法,建立了控制模型,研究了不同储能系统的影响。选择可再生能源单元波动对 IEEE 4 机 2 区域系统频率和有功功率的影响进行仿真验证。通过对储能系统的合理控制和灵活配置,为高渗透率可再生能源电力系统创造稳定、友好的频率环境。
全系统惯性和频率变化的变化速率由于主动发电和需求之间的不匹配而发生在电力系统中。发生不匹配后,将存储在同步生成单元的旋转质量中的能量,凭借其内在的机械惯性,提供了即时平衡任何不匹配的手段。直接惯性响应会导致转子速度的变化,从而导致系统频率。虽然这不能以可持续的方式解决功率不匹配问题,但要立即平衡这种不匹配,直到频率储备响应提供者能够响应频率的变化并改变其工厂的功率,以恢复发电和需求之间的平衡。The following analogy provides a description of the problem having in mind the current trend of more and more synchronous generators being replaced by converter connected generators… now from the perspective of a tightrope walker where the balancing pole provides instantaneous inertia support that allows time for his slower stabilising actions after the tightrope swings…
摘要 —本文提出了一种基于云托管和边缘托管的分布式能源 (DER) 数字孪生 (DT) 实现分布式能源 (DER) 协调控制的新方法。随着可再生能源的大规模整合,DER 在支持电力系统频率调节方面发挥着越来越重要的作用。然而,由于 DER 的能力和特性存在显著差异,DER 的个体和不协调响应可能导致整体响应效率低下,并产生不良特征,例如响应缓慢、严重超调等。因此,DER 的协调对于确保理想的总体响应至关重要。传统的集中式或分布式方法的一个主要缺点是它们严重依赖实时通信。本文通过应用可在云中托管的 DT 来解决集中式控制方法和可在边缘托管的分布式方法的挑战,以最大限度地减少对实时通信的需求,同时能够实现 DER 之间的整体协调。使用真实的实时模拟测试设置验证了所提出的基于 DT 的协调控制,结果表明,基于 DT 的协调控制可以显著改善聚合 DER 的响应,从而在意外事件期间为电网提供有效支持。
TI MSP430™ 系列超低功耗 MCU 由多种设备组成,这些设备具有针对各种应用的不同外设集。该架构结合了五种低功耗模式。该设备具有强大的 16 位精简指令集计算 (RISC) CPU、16 位寄存器和常数生成器,有助于实现最大代码效率。数控振荡器 (DCO) 允许设备在不到 5 µs 的时间内从低功耗模式唤醒到活动模式。 MSP430F51x2 系列是微控制器配置,具有两个 16 位高分辨率定时器、两个通用串行通信接口 (USCI) USCI_A0 和 USCI_B0、一个 32 位硬件乘法器、一个高性能 10 位 200 ksps 模数转换器 (ADC)、一个片上比较器、一个三通道直接存储器访问 (DMA)、5V 容限 I/O 和最多 29 个 I/O 引脚。定时器事件控制模块将不同的定时器模块相互连接,并将外部信号路由到定时器模块。该器件能够以高达 25 MHz 的系统频率工作。该器件的工作温度为 –40°C 至 85°C。
摘要:可再生能源耦合制氢技术可在一定程度上克服可再生能源随机性、间歇性的弱点,但由于可再生能源发电机组与主网长距离、反向分布,高比例电力电子制氢系统与电网互联时存在振荡不稳定的风险。首先,建立电力电子制氢系统阻抗模型,分析与电网互联的制氢系统振荡特性。其次,分析电解水制氢系统对多能源系统稳定性的影响,研究输入功率波动、产氢速率变化引起的不稳定问题。然后,提出一种基于功率分配的可再生能源制氢系统振荡抑制策略,用于增强电解水制氢系统多能源系统的稳定性。最后,通过建立可再生能源电解水制氢实验模拟系统。验证了不同可再生能源出力波动、不同系统阻抗条件下系统频率稳定性,仿真结果表明,提出的基于功率分配的多能源制氢控制方法能够保证可再生能源出力波动下系统的稳定性。
摘要:逆变供电可再生能源 (RES) 在现代能源系统中的渗透率很高,导致系统惯性响应降低。旋转惯性响应的降低与同步发电有关,可能会导致电力扰动后频率响应恶化。本文研究了沙特阿拉伯王国 (KSA) 电网的频率稳定性。它包括对 KSA 电网不断变化的能源格局的描述,以及对逆变供电 RES 的高渗透水平对 KSA 电网动态行为的影响的研究。通过使用 MATLAB/Simulink 仿真软件模拟未来 KSA 电力系统的案例研究,研究了 RES 的影响。在峰值和基本负载条件下,使用各种 RES 水平评估了 KSA 电力系统的频率稳定性。模拟结果表明,RES 的高渗透水平极大地影响了系统的频率响应,尤其是在非峰值条件下。此外,还讨论了电池储能系统 (BESS) 对补偿系统惯性响应降低的重要性。结果显示了聚合 BESS 对增强 KSA 电网系统频率控制的有效性。
国际电信联盟 (ITU) 发布的《无线电规则》。《无线电规则》会根据通常每两至三年举行一次的世界无线电通信大会《最后文件》中所体现的决定不时进行修订。有关国际电联与航空无线电系统频率使用相关的流程的更多信息,请参阅《民航无线电频谱要求手册》,其中包括经批准的国际民航组织政策声明 (Doc 9718)。N2.附件 10 的部分包括某些形式的通信系统设备的标准和建议做法。虽然缔约国将根据相关标准或建议措施中规定的条件确定是否需要进行特定安装,但理事会定期审查特定安装的必要性以及制定国际民航组织对有关缔约国的意见和建议,通常基于地区空中航行会议的建议(Doc 8144,地区空中航行会议指令及其议事规则)。N3.本章包含与通信系统相关的一般定义。本卷中每个系统的具体定义包含在相关章节中。N4.关于二次电源的材料和有关可靠性和可用性的指导材料
摘要 . 本文提出了一种新型 Q/P 下垂控制策略,用于调节具有太阳能和风能等多种可再生能源的独立微电网中的电压和频率。频率和电压控制策略应用于具有高渗透率间歇性可再生发电系统的独立微电网。自适应神经模糊逻辑接口系统 (ANFIS) 控制器用于可再生能源发电系统的频率和电压控制。电池储能系统 (BESS) 用于产生标称系统频率,而不是使用同步发电机进行频率控制策略。同步发电机用于维持 BESS 的充电状态 (SOC),但其容量有限。对于电压控制策略,我们提出了无功功率/有功功率 (Q/P) 下垂控制来代替传统的无功功率控制器,以提供电压阻尼效果。感应电压波动减少以获得标称输出功率。对所提出的模型进行了不同情况的测试,结果表明,所提出的方法能够用最小额定同步发电机补偿微电网中发生的电压和频率变化。©2020。 CBIORE-IJRED。保留所有权利。
摘要:传统发电厂的退役和基于逆变器的可再生能源技术的安装降低了整个电力系统的惯性,增加了系统频率变化率 (RoCoF)。这些预期的高 RoCoF 值缩短了在发生负荷削减或发电量削减之前所需的时间响应。在未来可再生能源在电力系统中占主导地位的情景中,同步机器在容量和时间响应方面满足此类条件的能力是不确定的。通过模拟两种具有不同电网规模和主要备用响应的情景,评估了基于逆变器的快速功率储备和合成惯性的实施情况。作为主要结果,获得的结果是,对于高达 40% 的不平衡,无论同步响应和电网规模如何,渗透率超过 80% 的基于逆变器的发电的快速功率储备的完全激活时间都需要为 100 毫秒或更短,这意味着当前的频率测量技术和快速功率储备部署时间无法确保高度不平衡条件下的系统稳定性。在不太不平衡的条件下,欧洲电网变得至关重要,不平衡程度从 3% 开始,非同步份额为 60%。
高频无线电力传输技术特刊 无线电力传输 (WPT) 技术在众多新兴应用中越来越重要,包括交通电气化、电网、消费电子、医疗和太空。其非接触性质使其在高温、水下、地下和外层空间等具有挑战性的环境条件下具有优势。当前 WPT 系统的性能与开关频率密切相关,开关频率是功率容量、功率密度和效率的关键决定因素。随着宽带隙和超宽带隙器件 (WBG 和 UWBG) 的快速发展,最新的半导体能够在高功率水平下实现高开关频率,从而为 WPT 系统提供能量。此外,大多数关于高频 WPT 的单独报告都没有考虑如何在批量生产中制造谐振器,而单个谐振器是针对测试进行调整的,这不适合工业批量生产。本期特刊积极征集针对广泛功率水平范围内高频 WPT 技术的前沿研究贡献。通过展示最新进展,我们旨在突破当前限制当代 WPT 系统频率和功率水平的界限。我们邀请研究人员为此做出贡献,并促进这一充满活力的领域的进一步创新。