简介在继续研究潜在的 DNA 双插入剂 1–5 和相关吖啶 6–8 的过程中,我们现在描述了六种新的双(9-氨基吖啶)1–6 的合成及其对 L-1210 鼠白血病细胞的体外细胞毒性。具有半刚性系链的 DNA 双插入剂通常比具有柔性系链的化合物表现出更好的抗肿瘤活性。9–12 例如,二特卡利铵正在临床试验中用于治疗癌症。13 此外,由于平面吖啶环本身是一种出色的 DNA 插入剂,因此多项研究表明吖啶和双吖啶具有抗癌特性也就不足为奇了,14 其中一种是药物安吖啶。15 双插入剂的 DNA 结合和其他特性也已得到充分证实,16–23 新型功能化吖啶表现出独特的物理和生物物理特性。 24–27
致病性金黄色葡萄球菌利用 IsdH 表面受体主动从人类血红蛋白 (Hb) 中获取铁。血红素提取由受体内的三域单元介导,该单元包含其第二 (N2) 和第三 (N3) NEAT 域,由螺旋连接域连接。提取发生在动态复合体中,其中受体与每个珠蛋白链结合;N2 域与 Hb 紧密结合,而受体内大量的域间运动使其 N3 域能够暂时扭曲珠蛋白的血红素口袋。使用分子模拟结合马尔可夫模型,以及停流实验定量测量血红素转移动力学,我们表明受体内的定向域间运动在提取过程中起着关键作用。N3 域运动的方向性和血红素提取的速率由连接 N2 和连接域的短而灵活的域间系绳内的氨基酸控制。在野生型受体中,源自系链的定向运动使 N3 域能够填充能够扭曲 Hb 口袋的配置,而含有改变的系链的突变受体不太能够采用这些构象异构体并通过间接过程缓慢捕获血红素,其中 Hb 首先将血红素释放到溶剂中。因此,我们的结果表明 IsdH 受体内的域间运动在其能力中起着关键作用
致病性金黄色葡萄球菌利用 IsdH 表面受体主动从人类血红蛋白 (Hb) 中获取铁。血红素提取由受体内的三域单元介导,该单元包含其第二 (N2) 和第三 (N3) NEAT 域,由螺旋连接域连接。提取发生在动态复合体中,其中受体与每个珠蛋白链结合;N2 域与 Hb 紧密结合,而受体内大量的域间运动使其 N3 域能够暂时扭曲珠蛋白的血红素口袋。使用分子模拟结合马尔可夫模型,以及停流实验来定量测量血红素转移动力学,我们表明受体内的定向域间运动在提取过程中起着关键作用。N3 域运动的方向性和血红素提取的速率由连接 N2 和连接域的短而灵活的域间系绳内的氨基酸控制。在野生型受体中,源自系链的定向运动使 N3 域能够填充能够扭曲 Hb 口袋的配置,而含有改变的系链的突变受体不太能够采用这些构象并通过间接过程缓慢捕获血红素,其中 Hb 首先将血红素释放到溶剂中。因此,我们的结果表明 IsdH 受体内的域间运动在其能力中起着关键作用
电动力学(ED)系绳是从航天器延长的冗长电线。它具有强大的潜力,可以在低地球轨道上提供推进剂较少推进。该系链使用与玩具,电器和计算机磁盘驱动器中的电动机相同的原理。它是推进器,因为磁场会在电流携带的电线上施加力。地球提供磁场。可以通过正确控制该“电动力”线产生的力,以使用拉或推动航天器作为制动器或助推器。NASA计划通过系绳从地球大气中脱离能量,作为家庭首次演示无推进剂太空推进系统的首次演示,可能导致革命性的太空运输系统。与地球磁场合作将使包括国际空间站在内的众多航天器受益。系绳推进不需要燃料。完全可以重复使用,并且在环境上清洁,并以低成本提供所有这些功能。
层蛋白(NL)。控制基因组与 NL 相互作用的因素在很大程度上仍然难以捉摸。在这里,我们确定 DNA 拓扑异构酶 2 beta(TOP2B)是这些相互作用的调节器。TOP2B 主要与 LAD 间(iLAD)染色质结合,其消耗导致 LAD 和 iLAD 之间的基因组分区部分丢失,这表明其活性可能保护特定 iLAD 免于与 NL 相互作用。TOP2B 消耗对 LAD 与层蛋白 B 受体(LBR)相互作用的影响大于与层蛋白的相互作用。尽管两种蛋白质在基因组中的位置不同,但 LBR 消耗的表型模拟了 TOP2B 消耗的影响。这表明在 NL 组织基因组的互补机制。事实上,TOP2B 和 LBR 的共同消耗会导致部分 LAD/iLAD 倒置,反映了致癌基因诱导衰老的典型变化。我们提出,由 iLAD 中的 TOP2B 和 LAD 中的 LBR 控制的协调轴维持着基因组在 NL 和核内部之间的划分。关键词:层粘连结构域、DNA 拓扑结构、DNA 拓扑异构酶、基因组组织、核外围、层粘连蛋白 B 受体、NE 系链。重点:
Es 可实现删除、插入和碱基替换而不会造成双链断裂 1 。然而,目前的 PE2、PE2* 和 PEmax 效应物(nCas9 与 Moloney 鼠白血病病毒 RT(M-MLV RT)的融合)1 – 3 > 6.3 千碱基 (kb),超出了 AAV 的包装能力。高产量生产如此大的蛋白质或 mRNA(用于核糖核蛋白 (RNP) 或 RNA 递送)也是一项挑战。尽管一些拆分策略已用于递送 Cas9 相关基因组编辑工具 4 ,包括拆分内含肽 5 – 7 和 MS2(参考文献 8 – 10)或 SunTag 11 系链,但大多数拆分方法才刚刚开始应用于 PE 2、12、13。这些元素增加了 PE 系统的尺寸、分子复杂性以及生产和递送负担,并且限制了 PE 开发的组合吞吐量(即核酸酶和 RT 成分的混合和匹配)。pegRNA 优化对于有效的引物编辑也很重要。当前的 pegRNA 是一种结合 RNA,由 sgRNA 和包含 RT 模板 (RTT) 和引物结合位点 (PBS) 的 3′ 延伸组成。尽管在 PE 系统中整合 RNA 分子很简单,但由于 PBS 和间隔区之间不可避免的碱基配对以及潜在的 RTT-支架相互作用,它容易发生 RNA 错误折叠。最后,pegRNA 中的 3′ 末端延伸暴露在外,易受核酸酶降解,这可能会损害 pegRNA 的完整性。虽然 3′ 末端二级结构提高了 pegRNA 的稳定性 14 ,但仍需要进一步努力减少 pegRNA 的错误折叠和不稳定性。
对映选择性金 (I) 催化的挑战显然与活性配合物的线性几何形状有关,并且在许多情况下与对映决定步骤的外层机制有关。尽管如此,近年来可以通过空间拥挤的配体(其形成嵌入远端活性位点的深手性口袋)、双功能膦或可能通过亲金相互作用形成的双核配合物实现高对映选择性。1 另外,Toste 2 引入了手性反离子策略,其中值得注意的是 BINOL 衍生的磷酸盐在涉及阳离子金中间体的反应中充当手性诱导剂。尽管对于磷酸盐阴离子的确切机制和作用存在一些不确定性,但该策略已显示出突出的潜力,并引发了金 3,4 和其他过渡金属催化的重大进展。 5,6 在金 (I) 催化中,首次公开的分子内氢烷氧基化、氢羧化和氢胺化反应迄今为止仍然是反离子策略的主要应用领域,尽管该方法在理论上应该适用于更广泛的反应。值得注意的是,所有涉及对映体决定步骤中紧密离子对的反应都可能适用,包括那些通过碳阳离子中间体与远程中性金 (I) 单元进行的反应。这种情况可以用图 1.1 中的串联杂环化-亲核加成反应来适当地代表。7 在这种情况下以及其他情况下,手性反离子的立体化学控制受到磷酸盐-碳阳离子对的空间排列不明确和灵活的影响。我们认为可以通过以某种方式将磷酸盐反离子束缚在阳离子金复合物上来克服这个缺点(图 1.2b)。将磷酸单元连接到金配体的共价系链可能为关键中间体提供足够的几何约束和分子组织,从而实现有效的立体化学控制。如果正确实施,这种方法可能会突破对映选择性金催化以及更广泛地说对映选择性过渡金属催化中“离子配对策略”的极限。之前已经报道过在分子内嵌入阴离子的过渡金属配合物。然而在这些