超过30亿人的生计取决于海洋沿海的生态系统,但是由人类活动和气候变化驱动的压力越来越威胁到这些紧密相互依存的社会经济和环境生态系统的可持续性和韧性。对沿海环境,生物多样性和相关社会经济用途的长期观察对于理解此类社会生态系统,风险管理和评估公共政策的相关性至关重要。尽管在近几十年来的观察工作方面取得了重大进展,尤其是对于物理化学和生物地球化学变量,但部门碎片化已排除了系统思维和整体分析的发展,这对于充分理解沿海社会生态系统的复杂性至关重要。
SYHX1901 JAK/Syk 抑制剂 石药集团 斑块状银屑病 ; 白癜风 / II 期 类风湿性关节炎 ; 系统性红斑狼疮 / I 期 TOP1288 p38 MAPK/Src/Syk 抑制剂 TopiVert 溃疡性结肠炎 II 期 / cevidoplenib Syk 抑制剂 Genosco 免疫性血小板减少症 ; 类风湿性关节炎 II 期 / lanraplenib Syk 抑制剂 吉利德 干燥综合征 ; 狼疮性肾炎 ; 急性髓系白血病 II 期 / mivavotinib Syk/Flt3 抑制剂 Calithera Biosciences 弥漫性大 B 细胞淋巴瘤 II 期 /
摘要在2020年至2021年进行了喜马al尔邦索兰区的三个街区的调查,目的是评估土壤质量和植物养分含量在零预算自然农业(ZBNF)和常规农业系统下。30个代表性的表面土壤和植物样品(每人15种常规和ZBNF耕作系统)分别从农民田地分别在同一区块中练习ZBNF和常规耕作。n,p和k分别记录了5.21%,14.69%和10.27%。同样,与ZBNF耕作系统相比,在常规农业系统下,最大CA,MG和S分别记录了7.62%,12.21%和16.64%。相比之下,与常规农业系统相比,ZBNF系统下的土壤有机碳的有机碳高22.85%。可行的微生物计数(45.72×10 5 CFU G -1细菌,6.73×10 3 CFU G -1真菌和9.28×10 3 CFU G -1肌动菌肌动菌)也更高。此外,与ZBNF养殖系统相比,传统的耕作系统记录了叶片中较高的叶子大营养素和微量营养素。与ZBNF相比(92.07 Q ha -1),在常规农业系统下,在常规农业系统下,豌豆的产量明显更高(109.67 Q ha -1)。然而,与传统的耕作系统相比,传统农业系统下的生产耕种成本提高了47%的生产成本(2.13)的B:C比率更好(2.13)(1.52)。关键词:豌豆,零预算自然农业(ZBNF)系统,土壤养分状况,产量,成本经济学。
通过应用人工智能对核电站运行产生的大量文本信息进行搜索和分类,我们有望提高搜索效率,在短时间内找到合适的信息,并通过自动分类提高信息分析的精细度。为此,我们使用基于向量空间模型的人工智能语义检索来检索信息,评估其有效性并提取问题。
1 https://www.jpo.go.jp/system/laws/gaikoku/document/mokuji/germany-tokkyo.pdf
10:05-10:35非平衡稳态和机制,用于在铁磁铁中产生镁化学电位,并具有两种磁场Arakawa Naoya(Toho University)(Toho University)“非平衡稳态和机制”
所有这些在细胞中都起着非常重要的作用。核膜是围绕细胞核的双层结构,在保护细胞核免受细胞质和保护细胞核中的DNA免受外部影响方面发挥作用。核膜是控制重要过程的一个场所,例如细胞中的DNA复制,转录和修复。核膜对于维持核的形状也很重要,并且在稳定核的结构中也起作用。 核孔是嵌入核膜中的复合物,并用作在细胞核和细胞质之间运输材料的途径。细胞核中所需的蛋白质和RNA通过核孔传输,相反,在细胞核中合成的RNA和核糖体亚基中的RNA转运到细胞质。该传输非常严格控制,对于单元的正常运行至关重要。 如果这些结构无法正常运行,细胞将无法执行正常的基因表达或蛋白质合成,从而对细胞功能造成严重损害。因此,核膜和核孔是细胞寿命支持的极其重要的结构。 到目前为止,已经有几份有关ALS中核膜和核孔的报道,但是讨论的解释和意义一直在继续。在该研究组中,我们建立了IPS细胞(Ichiyanagi N等。运动神经元与干细胞报告的分化2016(Setsu S等人Biorxiv 2023),此外,使用ALS患者的验尸组织(脊髓)来阐明核鞘和核孔的病理。 3。进行了研究内容和结果(1)免疫染色,以评估运动神经元(18个月大)野生型小鼠和FUS-FUS-ALS模型小鼠的运动神经元(聊天量)(聊天定型)中核膜(层层B1,lamin a/c)的形态。 FUS-ALS模型小鼠中的运动神经元显示出与核膜相对应的部分的亮度和圆度降低(图1)。此外,核孔的形态学评估(NUP62)显示核孔中存在缺陷。这些结果证实,在FUS-ALS模型小鼠中,核膜和核孔受损。
特拉维夫大学材料科学与工程系,拉马特阿维夫 6997801,以色列 摘要 先进的 2D 材料(如 MXenes)表现出卓越的电气、机械和热特性,使其成为集成电路架构中理想的替代品,而传统金属元件则受到持续小型化和功率限制的挑战。在这项工作中,我们介绍了一种可扩展的方法,通过结合光刻和旋涂技术来制作 10 纳米以下 MXene 薄膜图案。这种方法可确保形成均匀的微图案,而创新的、简单的 HCl 处理步骤可有效清除盐残留物,这是 MXene 合成中反复出现的问题。所得 MXene 薄膜厚度约为 6-7.5 纳米,光学透明,能够精确地进行微图案化,横向分辨率低至 2 µm。严格的分析表明,这些薄膜表现出卓越的导电性,并且 MXene-Si 结具有高光敏性。所提出的方法与现有的微电子制造装置无缝集成,标志着 MXene 在柔性、透明和可穿戴电子产品(从互连线和电极到高灵敏度光电探测器)中的应用取得了重大进展。