摘要 — 为了实现长期自主导航中稳健、无漂移的位姿估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的紧耦合非线性优化估计器。与以前的松散耦合的工作不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来计算惯性残差,并利用该算法的结果有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,而优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合的融合方法。与室外无人机 (UAV) 飞行中的松散耦合方法相比,平均位置误差减少了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是首次在基于优化的视觉惯性里程计算法中紧密融合全局位置测量,利用 IMU 预积分方法定义全局位置因子。
SKS 端吸式离心泵旨在提供最高的输出和效率性能,以满足多种水应用以及一般工业和辅助电源的要求。SKS 是一种带电动机的紧耦合(一体式)泵,可配备变频器。为了满足任何安装要求,泵可以水平、倾斜或垂直放置 - 始终使电动机朝上。
这款集成接收器提供完整的精确定位服务 (PPS) 精度。同时的 L1/L2 操作提供实时电离层校正,以进一步提高精度。其主要通信接口是高速 LVCMOS 串行端口。集成的抗干扰解决方案利用双元件数字零位来提高抗干扰能力。此外,该系统具有超紧耦合(UTC)单元接口选项,可提高抗干扰性能和导航精度。
摘要 — 为了实现长期自主导航中稳健、无漂移的姿态估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的方法,该方法是基于紧耦合非线性优化的估计器。与以前的松散耦合研究不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来制定惯性残差,并利用这种算法的结果来有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合融合方法。与室外无人机 (UAV) 飞行中的松耦合方法相比,平均位置误差降低了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是第一项在基于优化的视觉惯性里程计算法中紧密融合全局位置测量的工作,利用 IMU 预积分方法定义全局位置因子。
这款集成接收器提供完整的精确定位服务 (PPS) 精度,其同时进行的 L1/L2 操作可提供实时电离层校正,从而进一步提高精度。其主要通信接口是高速 LVCMOS 串行端口。集成的抗干扰解决方案利用数字调零来提高抗干扰能力。此外,该系统还具有超紧耦合 (UTC) 单元接口选项,可提高抗干扰性能和导航精度。
• 内核 Arm Cortex-M7 在典型条件下以 100 MHz 运行 – 16 KB I-Cache 和 16 KB D-Cache,具有错误代码校正 (ECC) – 单精度和双精度硬件浮点单元 (FPU) – 具有 16 个区域的内存保护单元 (MPU) – DSP 指令、Thumb ® -2 指令集 – 具有指令跟踪流的嵌入式跟踪模块 (ETM),包括跟踪端口接口单元 (TPIU) • 内存 – 128 KB 嵌入式闪存,内置 ECC(最多 2 个错误校正) – 384 KB 嵌入式 SRAM 用于紧耦合存储器 (TCM) 接口,以与 Cortex-M7 相同的频率运行,内置 ECC(最多 1 个错误校正) – 768 KB 嵌入式多端口 SRAM,内置 ECC(最多 1 个错误校正),连接到 AHB 系统,以与系统时钟相同的频率运行 – 硬化外部存储器控制器 (HEMC) 用于寻址具有可变数据大小(从 8 位到 48 位)的 PROM、SRAM 和 SDRAM • 六个独立芯片选择 • 最多可访问 2 GB 的外部存储器 • 内置 ECC,允许每 32 位纠正最多 2 位 • 系统外设 – 内置电源故障检测 (PFD)、可编程电源监视器和独立看门狗,确保安全运行
艾姆斯国家实验室与林德先进材料技术公司(前身为普莱克斯表面技术公司)之间的长期合作继续推动工业增材制造的发展。林德最近授权了七项艾姆斯实验室专利,这些专利与一种制造金属合金粉末的新型低成本方法有关。这些粉末可用于制造比使用其他制造方法制造的材料更能承受高温环境的结构部件。自 2019 年以来,林德已与艾姆斯实验室在多个项目上展开合作。这一合作始于普莱克斯和艾姆斯实验室的研究人员通过技术商业化基金项目改进了实验室的紧耦合气体雾化模具技术。最近,林德与艾姆斯实验室合作,通过 HPC4EI 奖优化其雾化器设计和操作。艾姆斯实验室的研究人员利用他们在 2D 和 3D 计算流体动力学建模方面的专业知识来研究雾化器。