Figure 7. Morphologies and surface roughness values of (a) the initial surface and the polished surface under conditions of (b) without UV-light, (c) TiO 2 film electrode with UV-light, (d) TiO 2 film electrode with UV-light and anodic bias, (e) CeO 2 -TiO 2 composite-film electrode with UV-light and (f) CeO 2 -TiO 2 composite-film elec- trode with UV-light and anodic bias [31] 图 7. (a) 初始表面; (b) 无紫外光条件下抛光表面; (c) 有紫外光并使用用 TiO 2 薄膜电极抛光下表 面; (d) 在有紫外光和阳极偏压的 TiO 2 薄膜电极下抛光表面; (e) 有紫外光并使用 CeO 2 -TiO 2 复合 膜电极下抛光表面; (f) 有紫外光和阳极偏压的 CeO 2 -TiO 2 复合膜电极抛光表面的形貌和表面粗糙 度值 [31]
摘要:紫外光电探测器(UVPD)在军事和民用应用中发挥着重要作用,通常采用宽带隙半导体(WBS)作为构造模块来制造。遗憾的是,基于 WBS 的 UVPD 商业化往往受到其相对较高的制造成本的限制,因为需要使用非常复杂的生长仪器。在本文中,我们提出了一种基于具有相对较小带隙的非 WBS 硫化铅(PbS)的灵敏 UVPD。器件分析表明,由 48.5 nm PbS 纳米薄膜制成的 UVPD 对 365 nm 的紫外线照射高度敏感。具体而言,在 365 nm 照射下的响应度和特定探测率分别为 22.25 AW − 1 和 4.97 × 10 12 Jones,与大多数传统的基于 WBS 的 UVPD 相当或更好。基于 PbS 纳米薄膜的 UVPD 还表现出优异的环境稳定性。实验结果和基于技术计算机辅助设计软件的模拟证实,PbS 纳米薄膜的异常特性与相对较薄的厚度和波长相关的吸收系数有关。这些结果为窄带隙半导体在未来光电设备和系统中实现低成本敏感 UVPD 提供了机会。关键词:紫外光电探测器、窄带隙半导体、PbS、高响应度、技术计算机辅助设计 ■ 介绍
零维 (0-D) 卤化铅钙钛矿纳米晶体 (NC) 因其优异的性能,例如高光致发光量子产率 (PLQY) 以及尺寸和成分控制的可调发射波长,在光电器件领域引起了人们的广泛兴趣。然而,铅钙钛矿 NC 中铅 (Pb) 元素的毒性是钙钛矿 NC 商业化应用的瓶颈。在此,我们报道了一种简便的配体辅助合成方法,实现了无铅 Cs 3 Cu 2 Cl 5 NC,其 PLQY 高达 ∼ 70% 并且对环境氧气/水分具有良好的稳定性,是一种很有前途的下转换材料。它具有高 PLQY 和大斯托克斯位移(∼ 300 nm)的优点,这源于 Jahn-Teller 畸变和自陷激子 (STE) 的影响。此外,Cs 3 Cu 2 Cl 5 NCs 嵌入复合膜 (NCCF) 被用于增强硅 (Si) 光电探测器的紫外线 (UV) 响应。外部量子效率 (EQE) 测量表明,基于 NCCF 与 Si 光电二极管的结合,紫外线响应可从 3.3% 大幅提高至 19.9% @ 295 nm。我们的工作提供了一种有效的方法来开发高效、稳定的无铅 Cs 3 Cu 2 Cl 5 NCs,用于太阳盲紫外线光电探测器。
随着人们对可持续性的关注度不断提高,对易于拆卸和重复使用的产品的需求也随之增加。最初设计用于粘合的粘合剂现在面临着选择性去除的需求,从而实现各行业的快速组装拆卸和高效维护。这种需求在显示器行业尤为明显,因为可折叠设备的兴起需要专门的粘合剂。本文介绍了一种用于可折叠显示器的新型光学透明粘合剂 (OCA),具有独特的紫外线刺激选择性去除功能。该方法将二苯甲酮衍生物掺入聚合物网络中,便于在紫外线照射下快速脱粘。该方法的一个关键特点是巧妙地利用可见光驱动的自由基聚合来制造 OCA 薄膜。该方法与各种单体表现出显著的兼容性,并对二苯甲酮表现出正交反应性,使其成为大规模生产的理想选择。所得 OCA 不仅具有高透明度和均衡的弹性,以及出色的抗反复折叠性,而且在暴露于紫外线照射时还表现出显著降低的粘附性。通过将这种定制配方与战略性集成的紫外线响应元素相结合,我们提供了一种有效的解决方案,可提高可持续电子产品和显示器这一快速发展的领域的制造效率和产品可靠性。这项研究还有助于环保设备制造,满足新兴技术需求。
AlGaN/GaN 高电子迁移率晶体管 (HEMT) 结构具有出色的电气和材料特性,使其成为制造高性能紫外光电探测器 (UV PD) 的理想选择,尤其是使用金属-半导体-金属 (MSM) 配置时。然而,MSM 设计的金属布局和多堆栈 HEMT 中的晶体缺陷会降低光电流并降低器件性能。具有不同纳米特征的 AlGaN/GaN 表面纳米结构化是一种很有前途的方法,可以提高光吸收效率并增加器件响应。在这项工作中,我们展示了通过使用周期性纳米孔阵列设计表面来增强性能参数的 AlGaN/GaN HEMT MSM 紫外光电探测器。光学模拟用于优化纳米孔周期性和深度的设计。我们制造了具有不同纳米孔深度的无图案化和纳米孔图案化器件,并且随着纳米孔的加入,它们的性能得到了显着增强。具有 40 nm 深纳米孔和 230 nm 阵列周期的器件在光电流 (0.15 mA)、响应度 (1.4 × 10 5 AW − 1 )、紫外/可见光抑制比 (≈ 10 3 ) 和比探测率 (4.9 × 10 14 Jones) 方面表现出最高的性能。这些发现提出了一种与 HEMT 兼容的策略来增强紫外光电探测器在电力光电应用中的性能,突出表明纳米孔图案化对于紫外光电检测技术的进步具有良好的前景。
宽带隙半导体有可能表现出负电子亲和势 (NEA)。这些材料可能是冷阴极电子发射器的关键元素,可用于平板显示器、高频放大器和真空微电子等应用。结果表明,表面条件对于获得负电子亲和势至关重要。在本文中,角度分辨紫外光发射光谱 (ARUPS) 用于探索金刚石和 AlGaN 表面的影响。紫外光发射在表征电子发射方面的价值在于该技术强调了发射过程的影响。为了充分表征电子发射特性,还需要采用其他测量方法,例如场发射的距离依赖性和二次电子发射。最近,这些测量方法已用于比较 CVD 金刚石膜的特性。[l] 半导体的电子亲和势定义为将电子从导带最小值移到距离半导体宏观较远的距离(即远离镜像电荷效应)所需的能量。在表面,该能量可以示意性地显示为真空能级与导带最小值之间的差异。电子亲和力通常不依赖于半导体的费米能级。因此,虽然掺杂可以改变半导体中的费米能级,并且功函数会相应改变,但电子亲和力不受以下因素的影响
研究了后退火对蓝宝石衬底上日盲多晶氧化镓 (Ga 2 O 3 ) 紫外光电探测器的物理和电学性能的影响。随着后退火温度 (PAT) 从 800 °C 升高到 1000 °C,多晶 Ga 2 O 3 的晶粒尺寸变大,但随着 PAT 进一步升高到 1100 °C,晶粒尺寸变小。随着 PAT 的增加,在蓝宝石上的 Ga 2 O 3 的透射光谱的吸收带边缘发生了蓝移,这是由于蓝宝石衬底中的 Al 掺入 Ga 2 O 3 中形成 (Al x Ga 1 – x ) 2 O 3 造成的。高分辨率X射线衍射和透射光谱测量表明,1100°C退火后的(Al x Ga 1 – x ) 2 O 3 的取代Al组分和带隙分别可以达到0.30和5.10 eV以上。1000°C退火样品的R max 与沉积态器件相比提高了约500%,且1000°C退火样品的上升时间和下降时间较短,分别为0.148 s和0.067 s。这项研究为多晶Ga 2 O 3 紫外光电探测器的制作奠定了基础,并找到了一种提高响应度和响应速度的方法。
SWRI的实验室配备了最先进的仪器和设备,包括我们的大型厌氧和共振室等独特的设施,以及在极端紫外光谱区域内运行的光学系统的能力。除了17,000平方英尺的主机械店外,我们的精密机械制造商店还制造了用于光学和太空系统的精确零件。商店根据一项符合NASA和美国军方要求的优质计划经营。该研究所可用的设施为客户提供了真正的端到端开发,测试和评估功能。