摘要 材料从液态到固态的快速光化学转化(即固化)使得制造用于微电子、牙科和医学的现代塑料成为可能。然而,工业化的光固化材料仍然局限于由高能紫外光驱动的单分子键均裂反应(I 型光引发)。这种狭窄的机制范围既对高分辨率物体的生产提出了挑战,也限制了可使用新兴制造技术(例如 3D 打印)生产的材料。在此,我们开发了一种基于三重态-三重态湮没上转换 (TTA-UC) 的光系统,该系统可在低功率密度(<10 mW/cm 2 )和环境氧气存在下使用绿光有效驱动 I 型光固化过程。该系统还表现出其固化深度对曝光强度的超线性依赖性,从而提高了空间分辨率。这使得 TTA-UC 首次集成到廉价、快速、高分辨率的制造工艺——数字光处理 (DLP) 3D 打印中。此外,相对于传统的 I 型和 II 型(光氧化还原)策略,目前的 TTA-UC 光引发方法可改善固化深度限制和树脂储存稳定性。本报告提供了一种用户友好的途径,可在环境光化学过程中利用 TTA-UC,并为制造具有更高几何精度和功能的下一代塑料铺平了道路。
可用于探测材料表面的元素,电子和化学特性。11–14虽然通过峰值解构对XPS数据的解释很普遍,但对技术的基本理解和对正确数据处理的欣赏通常却经常丢失。15最近,在XPS领域的领先从业人员之间的社区努力中准备了一系列宝贵的指南,目的是使XPS的新研究人员能够计划实验并将其数据理解到高水平。本系列发表在“ X射线光电子光谱的实用指南”中,例如“用于X射线光电子光谱的实用指南:规划,进行和报告XPS测量的第一步” 16和“实用曲线拟合X射线光电机光谱曲线光谱”的实用指南。17此外,还有许多先进的技术,许多材料科学家都不熟悉。此外,XPS制造商的当前重点是使用表面探针的组装对单个分析点进行的高吞吐量检查,甚至是非表面特定技术(例如拉曼光谱)。由于此类系统的可用性变得更加广泛,因此需要对多技术表面分析的能力,优势和弱点进行广泛了解。本综述旨在强调使用基于实验室的XP和相关表面技术的材料分析这种组合方法的好处。在基于实验室的系统(离子散射,紫外光电器,螺旋螺旋发射和电子能量损失光谱)上最常规发现的那些实验探针的应用,尽管许多其他补充
摘要:光氧化还原催化通常依赖于单个发色团的使用,而将两种不同的光吸收剂结合起来的策略很少见。在绿色植物的光系统 I 和 II 中,两个独立的发色团 P 680 和 P 700 都独立地吸收光,然后它们的激发能量以所谓的 Z 方案结合,从而驱动一个热力学上非常苛刻的整体反应。在这里,我们采用这一概念对有机底物进行光氧化还原反应,其中组合能量输入是两个红光子而不是蓝光或紫外光。具体而言,在过量二异丙基乙胺存在下,Cu I 双(α-二亚胺)复合物与原位形成的 9,10-二氰基蒽基自由基阴离子结合可催化约 50 个脱卤和脱甲磺酰反应。这种双光氧化还原方法似乎很有用,因为红光的破坏性较小,而且穿透深度比蓝光或紫外线辐射更大。紫外-可见瞬态吸收光谱表明,溶剂从乙腈到丙酮的细微变化会引起反应机制的转变,涉及占主导地位的光诱导电子转移或占主导地位的三重态-三重态能量转移途径。我们的研究说明了在多光子激发条件下运行的系统的机械复杂性,并提供了有关如何使所需和不需要的反应步骤之间的竞争变得更可控的见解。关键词:光催化、光谱、机械分析、电子转移、能量转移■简介
中微子真实本质的实验探索可以追溯到核物理学和粒子物理学的早期,现在正利用高精度和大规模的实验、机器和探测器。对假设的难以置信的罕见事件——原子核的无中微子双重贝塔衰变——的观察将表明中微子是其自身的反粒子,并有助于回答为什么宇宙中的物质多于反物质的基本问题。由于来自探测器的巧合但罕见的背景(即非信号)数据,当前和计划中的实验只能探索无中微子双重贝塔衰变的某些理论。要完全解决原子核是否能发生这种尚未检测到的反应,需要在探测器技术上取得新的突破,通过消除背景事件,达到难以捉摸的“正常有序”无中微子双重贝塔衰变模式。该研究项目将把核物理研发领域的最新进展统一并整合到一种新型探测器中,该探测器能够展示无背景无中微子双贝塔衰变搜索。值得注意的是,这将包括能够在单离子水平上检测氙气双贝塔衰变产生的钡++离子的传感器。此外,该探测器将综合直接紫外光收集和快速光学相机,以实现无中微子双贝塔衰变事件的高分辨率 3D 成像。实现无背景无中微子双贝塔衰变搜索将使科学办公室对无中微子双贝塔衰变的高优先级搜索达到前所未有的灵敏度水平。
清洁产品最终进入废水处理厂的流出物(Tanabe 和 Kawata 2008)。由于它不易被生物降解、吸附或被传统氧化剂氧化,因此很难处理(Otto 和 Nagaraja 2007)。高级氧化工艺(AOP)通常用于去除 1,4-二氧六环(Otto 和 Nagaraja 2007;McElroy 等人 2019)。在这些过程中,会原位生成强氧化羟基自由基(·OH)来降解污染物。这些技术包括紫外高级氧化(UVAOP),其中紫外光用于将过氧化氢(H 2 O 2 )光解为·OH。同样,紫外氯 AOP 通过光解游离氯生成·OH。臭氧 (O3) 可用作水和废水处理中的氧化剂和消毒剂,通过其自催化分解和与有机物的反应生成·OH,而有机物也可以被 H2O2 催化 (von Sonntag & von Gunten 2012;Stefan 2018)。在这些过程中,通常需要大量的化学药剂。虽然对 AOP 在废水废水中去除 1,4-二氧六环的研究有限,但臭氧通常被认为是废水废水中最好的 AOP。这是因为高含量的溶解有机物可以清除羟基自由基,而且紫外线的透射率低 (Katsoyiannis 等人 2011;Lee 等人 2016;Sgroi 等人 2021)。然而,如果存在溴化物 (Br),臭氧 (和 UV-Cl 2 ) 可以形成溴酸盐,这是一种受监管的消毒副产物。电子束处理使用加速电子通过水的辐射分解产生大量的氧化和还原自由基,如公式 (1) 所示 ( Cooper 等人 1992 年; Wang 等人 2016 年):
获取安全且有营养的食物对于维持生命和保持身体健康至关重要。食用被病原体污染的食物会导致从腹泻到癌症等严重疾病。许多食源性感染可导致长期损伤甚至死亡。因此,及早发现食源性病原体(如致病性大肠杆菌菌株)对于公共安全至关重要。检测这些细菌的传统方法基于在选择性培养基上培养并遵循标准生化鉴定。尽管这些方法准确无误,但却非常耗时。基于 PCR 的病原体检测依赖于先进的设备和专业技术人员,而在资源有限的地区很难找到这些设备和技术人员。而 CRISPR 技术对于识别致病细菌更具特异性和灵敏度,因为它采用可编程的 CRISPR-Cas 系统,可针对特定的 DNA 序列,最大限度地减少非特异性结合和交叉反应。在本项目中,开发了一种基于 CRISPR-Cas12a 传感的稳健检测方法,该方法可快速、灵敏且特异性地检测从田纳西州 17 个农场的成年山羊粪便样本中收集的致病性大肠杆菌分离株。检测反应包含致病区域、报告探针、Cas12a 酶和三种致病基因(stx1、stx2 和 hlyA)特有的 crRNA 的扩增 PCR 产物。与致病细菌的 CRISPR 反应在紫外光激发下发出荧光。为了评估该检测的检测灵敏度和特异性,将其结果与基于 PCR 的检测检测进行了比较。两种方法对相同样本的结果相似。该技术非常精确、高度灵敏、快速、经济高效且易于使用,并且可以轻松克服现有检测方法的局限性。该项目可以产生一种多功能的检测方法,该方法易于适应快速响应,以检测和监测对人类健康以及动植物生产造成大规模生物安全威胁的疾病。
当今,核物理和粒子物理实验活动的前沿需要具有高能量、能够在高通量(高达 . / ' )和高速率下工作的紧凑型探测器,以便测量非常罕见现象的截面[1-4]。碳化硅 (SiC) 因其出色的抗辐射性能代表了探测器技术的新挑战。由于其成分,SiC 是一种宽间接带隙半导体,并且是两组 IV 元素(硅和碳)的二元相图中唯一稳定的化合物。在所有宽带隙半导体中,碳化硅是目前研究最深入的一种,也是在高温电子器件、生物医学传感器 [5]、紫外光传感器 [6]、粒子和 X 射线探测器等广泛设备应用领域中最有潜力达到市场成熟的一种。 SiC 还被认真考虑作为硅的有效替代品,用于生产抗辐射设备,因为它可以将硅探测器的优异性能(效率、线性度、分辨率)与更大的抗辐射能力、热稳定性和对可见光的不敏感性结合起来。根据原子在晶格中的堆叠顺序,SiC 可以出现在各种类型的晶体结构中,这种特性被称为“多型性”。SiC 有 200 多种不同的多型体;3C、4H 和 6H 结构是微电子应用中最常见和最受欢迎的结构。每种多型体都有自己的物理特性,例如能带隙,范围从 3C 中的 2.36 eV 到 4H 中的 3.23 eV。4H-SiC 被认为最适合高功率、高频率和高温应用。用于设备应用的低缺陷材料通常通过 CVD(化学气相沉积)技术生长外延层获得。外延也允许高度
William R. Ott 博士是美国国家标准与技术研究所 (NIST) 物理测量实验室副主任,该机构是一家拥有 2 亿美元资产的组织,拥有约 560 名全职员工和 500 名客座科学家和临时员工。该实验室因其出色的研究和技术服务而受到全世界的认可。实验室工作人员几乎赢得了所有重大技术奖项,包括三项诺贝尔物理学奖。Ott 博士曾担任美国国家标准局 (现为 NIST) 辐射物理部主任、NIST 电子和光学物理部主任、NIST 原子、分子和光学物理中心副主任以及 NIST 物理实验室副主任。1977-78 年,他曾任杜塞尔多夫大学亚历山大·冯·洪堡研究员,现为美国光学学会、美国物理学会和华盛顿科学院院士。他的个人研究领域包括电子原子碰撞、等离子体光谱、紫外线辐射技术和光学计量学。他率先使用等离子体放电作为近紫外和真空紫外光谱区域的辐射标准,并与美国宇航局资助的首席研究员合作,对太空实验进行辐射校准,从首次天空实验室太阳辐射测量到哈勃太空望远镜。他发表了 69 篇技术论文和报告,发表了多次演讲,并参与组织会议和研讨会。2000 年至 2011 年,他倡导物理实验室开发生物物理、定量医学成像和纳米医学应用的测量方法和标准。他能说流利的德语,具备意大利语的工作知识,是一位出色的钢琴家,喜欢打网球和跑步锻炼。30 多年来,他一直是教堂的活跃成员。
BaTiO 3 化合物:DFT 研究 A. Sohail a、SA Aldaghfag b、MKButt a、M. Zahid c、M.Yaseen a,*、J. Iqbal c、Misbah c、M. Ishfaq a、A. Dahshan d、ea 自旋光电子学和铁热电 (SOFT) 材料与器件实验室,巴基斯坦费萨拉巴德 38040 农业大学物理系 b 沙特阿拉伯利雅得 11671 诺拉公主大学 (PNU) 科学学院物理系 c 巴基斯坦费萨拉巴德 38040 农业大学化学系 d 沙特阿拉伯艾卜哈国王大学科学学院物理系 e 埃及塞得港大学科学学院物理系 钒 (V) 掺杂对采用自旋极化理论研究了不同浓度(x = 12.50%、25%、50%、75%)对BaTiO 3 钙钛矿物理性能的影响。两种状态的电子能带结构(BS)表明,Ba 0.875 V 0.125 TiO 3、Ba 0.75 V 0.25 TiO 3、Ba 0.5 V 0.5 TiO 3 和Ba 0.25 V 0.75 TiO 3 化合物均为半金属铁磁(HMF)材料。结果表明,V 对Ba 1-x V x TiO 3 化合物的HMF行为起着重要作用。此外,磁特性证实了所有所述化合物的磁矩的整数值。在光学性能方面,还计算了反射率R(ω)、光吸收α(ω)、介电函数ε(ω)、消光系数k(ω)和折射率n(ω)。完整的光学参数集表明上述材料可用于可见-紫外光电子器件。基于半金属 (HM) 的结果,V 掺杂的 BaTiO 3 可用于自旋电子学应用。 (2021 年 6 月 20 日收到;2021 年 10 月 5 日接受) 关键词:半金属铁磁体、态密度、磁矩、光学参数 1. 简介在过去的十年中,HMF 材料因其在隧道结、光电子学和磁性器件中的应用而引起了人们的广泛关注。此外,HMF 材料在自旋电子学中起着重要作用,因为这些材料包含两种自旋态,一种自旋版本表现出金属行为,而另一种自旋态表现得像半导体或绝缘体。HMFM 化合物,例如 PtMnSb 和 NiMnSb Heusler 合金,最初由 Groot 等人 [1- 4] 报道。
或 L2,1 距离地球近一百万英里。经过 20 多年的设计、开发和测试,一个月的极其复杂的在轨部署(包括 344 个潜在的单点故障)和六个月的调试活动,JWST 现在正在进行科学操作,它是人类有史以来发送到太空的最大、最强大的望远镜。JWST 是一个大型红外太空望远镜,由美国国家航空航天局 (NASA) 科学任务理事会天体物理学部管理。该望远镜旨在成为美国国家航空航天局 (NASA) 两大大型天文台哈勃太空望远镜和斯皮策太空望远镜的补充和科学继任者。2 JWST 在灵敏度和分辨率方面的前所未有的提高使天文学家能够更详细地观察更远距离的宇宙。 1999 年,美国宇航局正式批准启动下一代太空望远镜 (NGST) 的项目制定。2000 年,NGST 被推荐为天文学和天体物理学十年调查的首要重大举措,并设想成为一台 8 米级的红外太空望远镜,“旨在探测第一批恒星发出的光并追踪星系从形成到现在的演化”,“将彻底改变人们对当今银河系恒星行星形成方式的理解。”3 这些主题一直贯穿着 JWST 任务的科学主旨。在詹姆斯韦伯太空望远镜的研发过程中,科学、空间和技术委员会举行了多次监督听证会,包括在 2011 年、2015 年和 2018 年。今天的听证会是委员会首次就望远镜观测的早期科学和科学结果举行的听证会。红外天文学 JWST 经过优化,可观测红外光。人眼可以感知可见光,即可见光,而红外光的波长较长,位于电磁波谱光学部分的红端以外,如图 1 所示。天文学利用红外光研究较冷的物体,例如尚未开始燃烧氢的年轻恒星或恒星周围盘中形成的行星。天文学家还在红外范围内进行观察,以透过星云或恒星形成云层中的尘埃(通常会阻挡可见光)。宇宙中第一批恒星和星系发出的光最初是以可见光或紫外光的形式发射的,但它以红外光的形式到达地球,因为它在不断膨胀的宇宙中传播很长的距离,被拉伸到更长的波长。天文学家将这种拉伸效应称为“红移”。