摘要:将五种不同尺寸(170、190、210、230和250 nm)的聚(苯乙烯甲基丙烯酸酯 - 丙烯酸丙烯酸)光子晶体(PCS)(PCS)应用于三种普通织物,即多酰胺,聚酯和棉花。使用扫描电子显微镜和两种UV/VIS反射分光光度计技术(集成球体和散射测量法)分析了PC涂层的织物,以评估PC的自组装以及获得的光谱和颜色特性。结果表明,织物的表面粗糙度对PC产生的颜色产生了重大影响。聚酰胺涂层的织物是唯一具有虹彩效果的样品,比聚酯和棉样品产生更加生动和鲜艳的色彩。观察到,随着入射光角的增加,随着新反射峰的形成,反射峰的高营养偏移发生。此外,用照明剂的光源在聚酰胺样品上进行了颜色行为模拟。照明剂A模拟显示出比用D50照明的模拟颜色更绿色和黄色的结构色。使用散射法对聚酯和棉花样品进行分析以检查虹彩是否在眼检查后看不见,然后证明存在于这些样品中。这项工作可以更好地理解结构颜色及其虹彩如何受到纺织底物形态和纤维类型的影响。
1格勒诺布尔阿尔卑斯大学,CEA,LITEN,DTS,LSA,INES,F-38000,法国2UniversitéClermontAuvergne-CNRS,ICCF,F-63000 Clermont-Ferrand,法国,法国,法国,作者:Romain Couderc couderc gerderc lomain coudercǀ emain.main.comain.coudcrc@ic.frc@ic。 +33479792361摘要数十年来,在操作太阳阵列中观察到了由紫外线暴露引起的光伏(PV)模块。不仅仅是一种美学上的不便,这种现象可以严重损害模块的性能,并通过封装的光保护损害其他降解机制。为了更好地理解当前材料中的这种反应,在紫外线照射下,具有紫外线或紫外线商业封装的HJT单子弹模块是在紫外线照射下老化的,并通过视觉检查,荧光成像和闪光测试对其进行检查。仅通过紫外线吸收器稳定的封装物进行了变色。一方面,紫外线吸收器光氧化是导致影响光传输到细胞的黄色发色团的形成。因此,它们导致光生电流的净减少,该电流在加速4200小时后达到4%。另一方面,他们的光漂白解释了模块边缘缺乏变色。根据当前封装配方的行为,必须提高紫外线吸收添加剂的稳定性,以确保设备在30年内的耐用性。限制全球变暖的最有害影响的简介,预计我们的社会的重大变化。太阳能光伏(PV)在过去十年中飙升,到2020年达到821 TWH。在发电方面,1.5°C的情况需要在全球能量混合物中急剧增加可再生能源部分[1]。到2030年需要8倍的容量才能达到零净排放到2050年,这是1.5°C的情况[2]。由于PV系统耐用性对其水平的能源成本(LCOE)[3]和生命周期评估(LCA)[4]的影响很高,因此必须对影响PV模块的不同降解模式进行彻底研究,以确保能量过渡。
货号:卷 (宽度:1,15 米) GESA520001 1 米 GESA520005 5 米 GESA520010 10 米 GESA520015 15 米 GESA520020 20 米 GESA520Z 1,15 米 x … 预切 (运行米数)
A类与B类NSF/ANSI 55将UV系统分为两个不同的类。A类设备旨在灭活和/或去除微生物,包括细菌,病毒,隐孢子虫卵囊和giardia囊肿,从污染的水中。A类紫外线系统不打算用于处理具有明显污染或有意来源的水,例如原污水,也不打算将废水转化为饮用水。它们旨在安装在视觉清澈的水上(不彩色,多云或浑浊)。B类系统是为了对被消毒的公共饮用水或其他具有管辖权的州或地方卫生机构对人类消费进行测试和认为可以接受的饮用水的饮用水,旨在替代杀菌治疗。B类系统旨在减少正常发生的非疾病滋扰微生物。这些系统并非用于消毒微生物学上不安全的水,并且可能不会提出个体或一般的囊肿主张。微生物健康影响主张可能不会对B类系统提出。
简介。在可见光和近红外 (NIR) 范围内具有等离子体特性的金属,例如金、银和铜,可用于光学、电子、传感和其他应用,目前备受关注 [1, 2]。重要的问题是等离子体特性的稳定性,这通常会限制某些金属的使用,因为它们具有化学反应性和可能产生杂散效应。用于等离子体的最常见材料是金,它具有出色的光学性能以及抗氧化性。金在等离子体中的局限性包括其价格高昂以及与微电子技术工艺不兼容。银由于光学损耗低而表现出优异的性能,也得到了广泛应用 [3-7],但通常被认为由于化学稳定性较低而吸引力较小,因此等离子体稳定性也较低 [8]。铜是另一种具有出色光学性能的金属。与金相比,它价格低廉,在可见光和近红外范围内的光学损耗较低。铜在等离子体应用中的优势已被充分发挥,例如在超低损耗铜等离子体波导和生物传感应用中 [9-13]。铜在暴露于环境大气时容易发生相对较快的表面氧化 [14]。在正常条件下,主要产物是 Cu 2 O,CuO 的贡献很小或没有。因此,要将 Cu 膜用于等离子体应用,需要保护结构表面免受氧化引起的降解。可以通过应用 SiO 2 、Al 2 O 3 甚至石墨烯的保护壳/涂层来实现 [10, 15]。在这项工作中,我们测试了一种简单的紫外臭氧处理方法,该方法可在铜膜上快速形成一层薄氧化层。该氧化层有效地保护了铜免受随后与氧化有关的等离子体特性降解的影响,这最近已在 Cu 纳米粒子中得到证实 [16]。我们对形成的氧化层进行了复杂的分析。我们预计,本文提出的结果将作为一种简单有效的方法,用于保留薄铜膜的等离子体特性,以用于非线性光学或传感应用。样品制作。使用 NEE-4000 电子束蒸发系统中的电子束蒸发沉积厚度为 28 nm 的铜膜。在室温下,将顶部覆盖有 2 nm 厚 SiO 2 层的干净硅晶片放置在电子束蒸发器的真空室中,压力为 3×10 7 Torr。作为沉积材料,使用纯度为 99.99% 的铜颗粒。沉积速率约为 2 Å/s。在一个周期内同时制造了 8 个相同的样品。引用的铜膜“厚度”是
[10]本文介绍了旨在有效消毒表面以打击病原体(包括对化学消毒剂耐药的病原体)的设计和开发的设计和开发。它采用UVC光进行消毒,并使用超声波和PIR传感器与人类警觉系统集成,以确保操作过程中的安全性。在各个高度的琼脂样品上测试了紫外线消毒的有效性,表明紫外线的有效性随着高度的增加而降低,并且在地板水平上观察到了最高的有效性。该系统是通过Blynk应用程序控制的,允许用户接收通知并远程管理设备,同时建议将来增强功能以提高检测和消毒效率。
在四维(4D)Energy-Momentum空间的部分中提供电子结构的多维图像。6个带结构和费米表面,也可以直接访问动量依赖性带重归其化和寿命效应。7–10另一个有趣的应用是轨道层析成像,它可以在实心表面上提供重建的分子轨道的真实空间断层图。11,12取决于将射击角度或表面平行动量成分成像到检测器上,该技术分别称为ARPES或动量显微镜。在此能量 - 巨型成像中,光子能量至少在三种不同的方式中是一个重要参数。首先,Photon能量确定最大可检测的电子动能,3D动量,因此,探测的体积
可打印的光学活性材料有限,需要定制的墨水配方。为了解决功能材料的有限可用性用于光电设备的喷墨制造,需要探索适用于具有不同组成的纳米颗粒的多功能墨水配方策略。这还将为在单个设备中探索多个纳米颗粒的探索新机会,以达到特定的光谱敏感性。在这里,我们开发了GQD的可打印墨水公式,nay-f 4:(20%yb和/或2%ER掺杂)UCNPS和PBS QDS Inks,并展示了它们用于基于石墨烯的光电探测器和荧光显示器等设备。通过开发和优化墨水配方,打印策略和沉积技术,以可控的方式沉积了光敏的纳米材料层,并将其集成到印刷的异质结构中。我们通过将其用作单层石墨烯(SLG)光电材料中的表面函数化层来体现纳米材料墨水制剂的潜力,其中可以实现r b 10 3 a w 1的光反应率,并且可以从gqd/slg到nir/slg和slg和slg dep dep dep and slg and slg和ppb and slg和pbs slg和pbs slg slg and slg slg和pps。我们还探索了多个墨水的沉积到一个结构中,说明可以产生诸如荧光显示器之类的设备,因为我们在此处使用CSPBBR 3 Perovskite NCS和UCNP喷墨印刷在柔性透明底物上。这项工作扩展了可打印的光活性纳米材料的材料库,并展示了其前瞻性用于印刷光电材料(包括柔性设备)。
1) N. Gerges、C. Petit-Etienne、M. Panabière、J. Boussey、Y. Ferrec、C. Gourgon;优化的紫外线灰度处理,用于光谱成像仪的高垂直分辨率;J. Vac. Sci. Technol. B 39 (2021);doi:10.1116/6.0001273
摘要:简介。手机充当Fomites,它构成了消散微生物的全球公共卫生风险,包括具有抗菌素抗性的高致病菌株。使用紫外线-C(UV-C)消毒手机提供了一种替代手段,以组合基本的手卫生,以防止手和手机之间的微生物交叉污染和传播。目标。这项研究旨在评估Glissner Clean Phone UV-C Phone Sanitiser(Glissner)设备的杀菌性效果。方法。进行了两项实验试验,以评估清洁电话(Glissner)。第一个是一项对照试验,在该试验中,对六种接种到移动电话接种的六种不同的微生物物种进行了清洁电话的效率。第二个是一项验证试验,评估了100张志愿手机上的清洁电话的杀伤性效率。效率是基于哥伦比亚绵羊血琼脂在UV-C治疗前后对微生物的菌落计数确定的。结果。在对照试验中,在用ST131大肠杆菌处理后,所有微生物的生长均降低,显示出4 loot 10 CFU/mL时生长最高的降低,然后在3 loot C. c. c. c. c. c. c. c. c. c. c. c. c. c. c. c. c.在该领域试验中还观察到了UV-C处理后微生物增长的总体降低,分别在菌落计算后24小时和48小时的平均生长降低了84.4%和93.6%。结论。这些发现证明了清洁电话(Glissner)迅速消毒手机的能力,从而提供了一种减少微生物的潜在传播的方法,包括具有抗菌耐药性的高致病性菌株。