摘要 遥感在探测和绘制人类活动在景观中的考古痕迹方面有着悠久而成功的记录。自二十世纪初以来,航空考古的工具和程序逐渐发展,而地球观测遥感经历了技术和方法进步和创新的重大步骤,如今能够以前所未有的精度、分辨率和复杂性监测地球表面。在此过程中获得的大部分遥感数据可能包含有关考古遗址和物体的位置和背景的重要信息。考古学已经开始利用这一巨大潜力,开发基于数字遥感数据和相关工具和程序的考古痕迹探测和绘图新方法。本章回顾了考古遥感和数字图像分析的历史、工具、方法、程序和产品,强调了航空考古和地球观测遥感融合的最新趋势。
1 Arizona大学天文学 /管家天文台,美国亚利桑那大学933 N Cherry Ave,Tucson,Tucson,AZ 85721,USA 2,Carnegie科学研究所的天文台,813 Santa Barbara Street,Pasadena,Pasadena,Pasadena,Pasadena,CA 91101,CA 91101,USA 3 USA 3物理学,Ben-Gurion Sletternation,Ben-Gurion Inservation,Ben-Gurion University of Negev,Negev,p.o. Box 653, Be'er-Sheva 84105, Israel 4 Department of Astronomy, University of Texas, Austin, TX 78712, USA 5 Sorbonne Universit ´e, CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France 6 Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St.威尔金森大楼,牛津奥克斯1 3RH,英国牛津路10号欧洲南部天文台,Karl-SC Hwarzsc Hild-Str。 2,85748德国Garching 11天体物理学科学部,代码660,NASA Goddard太空飞行中心,8800 Greenbelt Rd。,Greenbelt Rd。,Greenbelt,MD,MD,20771,美国,1 Arizona大学天文学 /管家天文台,美国亚利桑那大学933 N Cherry Ave,Tucson,Tucson,AZ 85721,USA 2,Carnegie科学研究所的天文台,813 Santa Barbara Street,Pasadena,Pasadena,Pasadena,Pasadena,CA 91101,CA 91101,USA 3 USA 3物理学,Ben-Gurion Sletternation,Ben-Gurion Inservation,Ben-Gurion University of Negev,Negev,p.o.Box 653, Be'er-Sheva 84105, Israel 4 Department of Astronomy, University of Texas, Austin, TX 78712, USA 5 Sorbonne Universit ´e, CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France 6 Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St.威尔金森大楼,牛津奥克斯1 3RH,英国牛津路10号欧洲南部天文台,Karl-SC Hwarzsc Hild-Str。2,85748德国Garching 11天体物理学科学部,代码660,NASA Goddard太空飞行中心,8800 Greenbelt Rd。,Greenbelt Rd。,Greenbelt,MD,MD,20771,美国,
仅用于研究使用。不是用于诊断或治疗用途。此产品提供遵守条款和条件的约束,包括位于www.biolegend.com/terms上的有限许可(“条款”),并且只能按条款提供。在不限制上述内容的情况下,Biolegend产品不得用于该术语中定义的任何商业目的,以任何形式转售,用于制造或反向工程,测序或以其他方式研究或用于学习或用于学习其设计或组合的情况,而无需明确的书面批准。不管本文档中给出的信息如何,用户都全权负责确定用户预期使用所需的任何许可要求,并假设使用产品所带来的所有风险和责任。Biolegend对专利侵权或任何其他风险或负债概不负责。Biolegend,Biolegend徽标和所有其他商标都是Biolegend,Inc。或其各自所有者的财产,并且所有权利都保留。8999 Biolegend Way,圣地亚哥,加利福尼亚州92121 www.biolegend.com免费电话:1-877-bio-legend(246-5343)电话:(858)768-5800传真:(877)455-9587
结合SAR卫星数据和AI技术的灾害监测技术正在发展。这将使我们能够广泛且高度准确地了解地表运动和损坏情况,并有望为快速采取防灾减灾措施做出贡献。具体来说,正在开发各种应用,包括使用卫星 SAR 监测土壤运动、通过将时间序列 SAR 干涉测量与地质信息相结合来可视化边坡灾害风险、以及使用 SAR 图像和人工智能提取地面和建筑物的损坏情况。特别是将SAR不受天气和时间影响的特性与AI先进的分析能力相结合,可以实现以往难以实现的广域、及时的灾害监测。
Solestial 开发了一种用于太空应用的超薄硅异质结太阳能电池,可以在低温下自我修复辐射损伤。电池厚度最小可达20μm,独特的缺陷控制使其能在65至90℃的空间环境下从辐射损伤中恢复,并长期保持高效率。采用商业硅片,利用自动化生产设备可以进行量产。它的电池效率达到了 20%,而且其灵活性和超薄性使其成为轻型太阳能毯的理想选择。该公司为卫星星座和太空开发项目提供低成本、长寿命的电源解决方案。
• 执行系统检查,以便服务技术人员快速诊断和纠正 音频和视频警报指南 1.DEF - 除霜(仅限冷冻机) 2.Cf - 清洁过滤器 3.DOOR - 门打开 4.E1 - 柜体温度高 5.E2 - 柜体温度低 6.E3 - 一小时除霜 7.E4 - 高压警报 8.E6 - 高电压 9.E7 - 低电压 10.E8 - 柜体温度。传感器故障 11.E9 - 除霜温度。传感器故障 12。E10 - 通信故障(仅限 DualTemp)
� 具有三根翼梁和五根翼肋的单体结构 � 机翼蒙皮以 54 英尺的翼尖对翼尖长度固化成一体 � 机翼蒙皮使用糊状粘合剂二次粘合到翼梁和翼肋上 � 通过使用混合编织石墨/铝织物作为所有外部表面的表面层来实现防雷 � 使用的材料是 HITEX/E7K8 12K/280 和 145 胶带以及 AS4 E7K8 3K/195 PW 织物。材料鉴定按照军事手册 17 规范进行。进行了层压板和层压板测试,以在冷/干、室温/干、室温/湿和热湿环境条件下产生张力、压缩、剪切强度、刚度和极限应变。
在 MedStar Good Samaritan 医院,我们始终以照顾社区为中心,这已成为我们近 50 年来天主教传统的标志。无论是与 MedStar 国家康复网络合作提供高质量的住院康复,还是通过成功老龄化中心提供老年病护理,还是通过 Good Health Center 提供健康和疾病管理,MedStar Good Samaritan 都致力于为我们的邻居服务,实现我们的愿景 — 成为关爱人民和促进健康的值得信赖的领导者。与 MedStar Union Memorial 医院一起,MedStar Good Samaritan 始终致力于在正确的时间和正确的环境中为我们的社区提供正确的护理。通过合作,我们能够为当地社区和整个地区提供医疗服务。
本期特刊简要概述了高分辨率星载射电天文学的现状。在射电天文学中,通过采用干涉测量法,特别是其“终极”体现——甚长基线干涉测量法 (VLBI),可以实现高角分辨率。本文发表的时机似乎非常恰当:2019 年将因与本期特刊主题相关的两个里程碑而载入射电天文学史。首先,作为第二个也是迄今为止最后一个专门的空间 VLBI 任务,由俄罗斯牵头的 RadioAstron(Kardashev 等,2013)在成功运行 7.5 年后完成了其在轨寿命。这项任务,连同它的两个前身,即 1986-1988 年的首次示范性轨道 VLBI 与 NASA 的跟踪和数据中继卫星系统 (OVLBI-TDRSS) (Levy 等人,1986) 以及首次专门的空间 VLBI 任务,即日本主导的 VSOP/HALCA (Hirabayashi 等人,1998),构成了 VLBI 系统基线超过地球直径的首批示例。RadioAstron 任务(本期特刊介绍了其部分结果)在其观测波长上提供了最高的角分辨率。本特刊中 Bayandina 等人、Bruni 等人、Edwards 等人、Gabuzda 等人、Jauncey 等人、Kovalev Yu.A. 等人、Kovalev YY 等人、Kravchenko 等人、Richards 等人、Shakhvorostova 等人、Shatskaya 等人、Zakhvatkin 等人和 Zensus 等人的论文回顾了 RadioAstro 的结果以及补充的地面研究和一些有关 RadioAstron 操作的主题。其次,2019 年标志着超大质量黑洞及其相对论“阴影”直接成像研究时代的开始。事件视界望远镜 (EHT) 合作组织 (2019) 进行的 230 GHz 全球地球甚长基线干涉测量观测取得了突破性成果。然而,进一步研究黑洞阴影的线性分辨率与事件视界相当,需要更清晰的视野。这可以通过在亚毫米波长处进行观测来实现,这比最近 EHT 在波长为
执行摘要 Chevron USA Inc. 已与 SunPower Corporation 签订合同,在加利福尼亚州克恩县雪佛龙 Lost Hills 油田附近约 220 英亩的土地上设计和建造一座 29MW 交流太阳能光伏电站。施工已接近完工,预计将于 2020 年 3 月投入商业运营。该电站设计还计划采用容量为 20 兆瓦时 (MWh) 的锂离子电池,这些电池将与太阳能逆变器直流耦合。PG&E 目前正在对电池存储组件的添加进行系统影响研究,预计将于 2020 年第四季度建成并上线。雪佛龙将根据电力购买协议购买太阳能发电厂的所有产出。购买的电力将部分取代太平洋煤气电力公司目前消耗的能源,现场产生的可再生太阳能将用于油田运营。根据加州的净能源计量 2.0 计划,超出雪佛龙实时需求的太阳能发电量将出口到太平洋天然气电力公司。电池模块将在太阳能发电高峰期间储存太阳能电池阵列产生的能量,从而减少输出到电网的多余电力,并在太阳能发电量较低时将其调度给油田使用。正如本申请中进一步描述的,雪佛龙估计,光伏电站每年约有 38,700 MWh 的太阳能电力将取代油田电力,从而产生 19,800 公吨的低碳能源信用额度。电池厂投入使用后,每年将有额外的 5,300 MWh 太阳能储存在电池中,这些能源也将由油田作业使用。这将产生额外的 2,700 公吨的低碳能源信用额度,当电池存储能力完全发挥作用时,总计 22,500 公吨。