尚未进行评估免疫检查点抑制剂治疗对生育能力的影响的研究。因此,对男性和女性生育的影响尚不清楚。有限的证据支持,由于提供果炎和降压物炎引起的免疫检查点抑制剂相关的性腺自由度可能会影响生育能力。免疫检查点抑制剂在给予孕妇时会造成胎儿伤害。在性活跃的女性中应考虑妊娠试验。重要的是,所有生殖潜在使用的患者在治疗时和治疗结束后都必须有效避孕。有非常有限的证据可以提供有关避孕时间表的指导。一些研究表明,在抗PD-1治疗后9个月内,PD-1受体占用率超过9个月(Brahmer等,2010)。因此,一些癌症专家建议使用避孕至少六个月甚至两年后使用避孕药。
剂量修改的证据是有限的,EVIQ提出的建议仅作为指导。他们通常是保守的,重点是安全。任何剂量修改均应基于临床判断,以及个体患者的状况,包括但不限于治疗意图(治愈性与姑息治疗),抗癌治疗方案(单一对组合疗法与化学疗法与化学疗法与免疫疗法),癌症的生物学,癌症,大小,突变,转移酶的其他副作用,良好的效果,表现良好,效果和其他副作用,表现为其他。修改基于临床试验结果,产品信息,已发表的指南和参考委员会共识。降低剂量适用于每个单独剂量,除非另有说明,否则不适用于治疗周期的总天数或持续时间。非血液学等级基于不良事件的共同术语标准(CTCAE),除非另有说明。肾脏和肝剂量修饰已在可能的情况下进行标准化。有关更多信息,请参见剂量注意事项和免责声明。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 5 月 30 日发布。;https://doi.org/10.1101/2023.05.30.542412 doi:bioRxiv preprint
披露:Owonikoko 博士自述获得诺华、BMS、阿斯利康和安进的资助和个人费用;获得武田、艾伯维、G1 Therapeutics、EMD Serono 和 PharmaMar 的个人费用;以及默克和 United Therapeutics 提供的除提交的工作之外的资助。Niu 博士自述受雇于马萨诸塞州剑桥的 Millennium Pharmaceuticals, Inc.,该公司是武田制药有限公司的全资子公司。Nackaerts 博士自述获得 Millennium Pharmaceuticals 的资助(仅向机构提供资金)。 Baik 博士报告称,在进行本研究期间,她获得了诺华、Loxo、辉瑞、阿斯利康、新基、罗氏/基因泰克、默克夏普和多姆、MedImmune、Mirati、葛兰素史克、第一三共、国立卫生研究院/国家癌症研究所和 Blueprint Medicines 的资助,还获得了诺华和阿斯利康的资助和个人费用、F. Hoffman-La Roche AG 的个人费用以及提交的工作之外的 Loxo、辉瑞、新基、罗氏/基因泰克、默克夏普和多姆、MedImmune、Mirati、葛兰素史克、第一三共、国立卫生研究院/国家癌症研究所和 Blueprint Medicines 的资助;她还报告称,她为诺华和阿斯利康提供了咨询。 Chouaid 博士报告称,除提交的工作外,他还从阿斯利康、勃林格殷格翰、葛兰素史克、罗氏、赛诺菲、礼来、诺华、默沙东、BMS 和安进公司获得个人费用。Santos 博士报告称,他还为基因泰克、礼来、武田、新基、默克、辉瑞、阿斯利康和勃林格殷格翰提供演讲服务。Chiang 博士报告称,他还从阿斯利康和艾伯维获得个人费用,以及从艾伯维、礼来、BMS 和安进公司获得除提交的工作外的资助。Chiappori 博士报告称,他还为武田、基因泰克、默克和新基提供演讲服务;为阿斯利康、BMS、安进和辉瑞公司提供顾问委员会服务;并从诺华、BMS 和阿斯利康获得研究资金。 Bahamon 女士、Li 博士、William 先生、Badola 女士、Shin 博士、Bedford 女士和 Leonard 女士均受雇于 Millennium Pharmaceuticals, Inc.(美国马萨诸塞州剑桥市,武田制药有限公司的全资子公司)。Sheldon-Waniga 博士现受雇于 Bluebird Bio,曾受雇于 Millennium Pharmaceuticals, Inc.(美国马萨诸塞州剑桥市,武田制药有限公司的全资子公司)。Ecsedy 博士现受雇于 Kyn Therapeutics,曾受雇于 Millennium Pharmaceuticals, Inc.(美国马萨诸塞州剑桥市,武田制药有限公司的全资子公司)。Ullmann 博士
乳腺癌是全球女性中最常见的癌症[1],是癌症相关死亡的主要原因[2],其发病率逐年增加。在临床上,乳腺癌主要通过手术,放疗,化学疗法和靶向疗法进行治疗[3,4]。但是,大多数患者仍接受常规手术和化学糖尿化的治疗。其中,化学疗法被认为是避免术后癌症复发的关键联系。紫杉醇是一种广谱的抗肿瘤药物,是乳腺癌使用最广泛的Che-Mothapeutics之一[5,6]。它会干扰肿瘤细胞中微管的分解,导致细胞周期停滞,防止癌细胞复制,并最终导致细胞死亡[7]。不幸的是,随着紫杉醇的广泛使用,乳腺癌患者对其产生了抗药性,从而导致治疗衰竭[8-10]。因此,迫切重要性是寻求一种潜在的药物分析机制,并提高乳腺癌患者对紫杉醇的敏感性。Gasdermin(GSDMS)是一个形成孔的蛋白质,在细胞死亡中起重要作用。gsdme是Gasdermin家族的家伙。它最初被识别为DFNA5(耳聋,常染色体显性5)[11,12],也称为ICERE-1,因为它在雌激素受体中的表达较低[1]。最近,越来越多的研究表明,GSDME在调节细胞死亡中起着重要作用[2,13,14]。DNA甲基化是哺乳动物中最稳定的表观遗传修饰之一[19]。通过对加油动物家族与抗癌特性之间关系的深入研究,越来越多的研究人员认为,GSDME是各种癌症的重要预测标记[13,15,16]。作为肿瘤抑制剂,GSDME已被证明可以抑制癌细胞的增殖,迁移和分化[2,13,15]。随着研究的加深,我们发现缺乏GSDME表达可能与肿瘤化学疗法抗性有关[16-18]。此外,已经提出了GSDME表达的丧失会在某些黑色素瘤细胞中引起对依托泊苷的抗性[18]。然而,没有研究研究乳腺癌中GSDME表达与耐化学疗法的关系。我们的目的是测试调节GSDME表达的精力可能是改善乳腺癌化学疗法效应并降低耐药性的有效方法。异常基因表达是人类癌症的特征,DNA甲基化状态的变化可能对基因表达产生深远的影响。它主要发生在基因组稀疏分布的CpG二核中[20]。研究表明,异常的DNA甲基化不仅与人类疾病有关,而且还与有希望的生物候选标记有关[21]。在这项研究中,我们通过使用5-甲基胞霉素抗体富集甲基化的DNA片段进行了免疫沉淀。此方法可以快速识别CpG位点。与高通量测序结合使用,被认为是量化甲基化水平的全基因组技术。许多研究表明,DNA甲基化在大多数肿瘤细胞中降低了GSDME的表达,因此很难在肿瘤细胞中诱导凋亡[15,17,22,23]。因此,我们可以使用DNA甲基转移酶抑制剂(Decitabine)来增加某些癌细胞中GSDME的表达(例如胃癌,大肠癌,乳腺癌等)增加了其对化学疗法药物的敏感性[24,25]。化学疗法会以多种方式导致肿瘤细胞死亡,其中一种是凋亡。凋亡,也称为炎性细胞坏死,是一个新发现的程序性细胞
卵巢癌是最致命的妇科恶性肿瘤,是女性癌症相关死亡的主要原因(Siegel 等人,2021 年)。尽管在治疗方面取得了一些进展,但晚期卵巢癌患者的 5 年相对生存率在过去几十年中并没有显着提高(Vaughan 等人,2011 年;Kuroki 和 Guntupalli,2020 年)。紫杉醇 (PTX) 属于紫杉烷类,是最广泛使用的抗肿瘤药物之一,被推荐作为多种癌症(包括卵巢癌和乳腺癌)的一线治疗。PTX 的作用机制是抑制微管的解聚,导致有丝分裂停滞延长,从而导致细胞死亡(Long 和 Fairchild,1994 年;Kavallaris,2010 年)。 PTX 和铂类化疗联合被公认为必不可少的治疗方法,尤其是在晚期病例中( Kuroki and Guntupalli,2020 )。然而,传统癌症疗法的持续使用会导致化学耐药性,并且很大一部分患者随着化学耐药性的产生而出现疾病复发。化学耐药性是一个棘手的问题,最终导致卵巢癌患者面临治疗失败和死亡( Pinato et al.,2013 )。虽然抗血管生成药物和 PARP 抑制剂等不同的靶向疗法在治疗持续性和复发性疾病方面显示出光明的前景,但它们尚未满足临床需求。因此,开发新的治疗方法对于卵巢癌患者来说迫在眉睫。多年来,联合治疗的概念已经被引入到癌症治疗的发展中( Bayat Mokhtari et al.,2017 )。有趣的是,传统中医药已在世界各地被广泛应用于各种癌症的补充和替代疗法。姜黄素 (Cur) 是从姜黄根茎中提取的天然酚类化合物,具有抗炎、抗氧化等全面的药理特性 (Zhang et al., 2015; Su et al., 2016)。先前的研究表明,Cur 可以发挥强大的抗癌特性,例如抑制癌细胞增殖和促进癌细胞死亡 (Xu et al., 2021)。Cur 还可以使癌细胞对一些化疗药物(如顺铂和吉西他滨)敏感,因此可用于多种癌症的联合治疗 (Yallapu et al., 2010; Yoshida et al., 2017; Zhang et al., 2017; Zheng et al., 2021)。此外,Cur 被 FDA 列为“公认安全 (GRAS)”化合物,支持其与传统化疗联合使用时的安全性和耐受性(Gupta 等,2013)。最近,几项临床前研究表明 Cur 增强了 PTX 介导的卵巢癌细胞细胞毒性,可能是一种有希望逆转癌症治疗中多种药物耐药性的药物(Liu 等,2016;Wei 等,2017)。然而,Cur和PTX联合治疗卵巢癌的治疗效果及其潜在的分子机制尚未完全揭示。微小RNA(miRNA)是约22个核苷酸的单链非编码RNA。miRNA可以通过靶向mRNA的3′非翻译区(3′UTR)参与翻译后修饰。已证明miRNA与肿瘤发生和肿瘤进展密切相关。miR-9-5p最近与癌症有关。越来越多的证据表明,miR-9-5p作为一种致癌iR,促进多种癌症(如非小细胞肺癌和前列腺癌)中的癌细胞增殖、侵袭和迁移(Li等,2017;陈
此手稿由UT-Battelle,LLC根据合同编号DE-AC05-00OR22725与美国能源部一起。 美国政府保留和出版商,通过接受该文章的出版物,承认,美国政府保留了非排他性,有偿,不可撤销的,全球范围内的许可,以出版或复制该手稿的已发表形式,或者允许其他人出于美国政府的目的。 能源部将根据DOE公共访问计划(http://energy.gov/downloads/doe-public-access-plan),为联邦赞助研究的这些结果提供公众访问。DE-AC05-00OR22725与美国能源部一起。美国政府保留和出版商,通过接受该文章的出版物,承认,美国政府保留了非排他性,有偿,不可撤销的,全球范围内的许可,以出版或复制该手稿的已发表形式,或者允许其他人出于美国政府的目的。能源部将根据DOE公共访问计划(http://energy.gov/downloads/doe-public-access-plan),为联邦赞助研究的这些结果提供公众访问。
靶向药物输送纳米系统的开发是一个具有挑战性的问题,旨在高效地运输生物活性分子并在患病组织的微环境中实现位点特异性释放。几年来,我们一直对修饰抗癌药物和神经保护药物以获得自组装纳米粒子 (NP) 感兴趣,从而提高其治疗效率。尽管传统的基于载体的 NP 在癌症治疗领域已显示出卓越的进展和前景,但仍需要进一步改进。例如,这种基于载体的 NP 的载药量通常较低(通常 <10 wt%),这大大降低了药物在肿瘤内的有效积累和释放药物的治疗效率。 1 此外,与此同时,由于复杂的制备程序和过度的化学处理,大多数报道的纳米载体在药物上是惰性的,这些载体的应用引发了人们对其代谢、生物降解和潜在的长期毒性以及严重炎症的担忧。 2 正因为如此,自组装纳米粒子是开发 NPs 的一种非常理想的替代策略,它本身携带治疗分子,而不是使用其他惰性载体。事实上,它们具有:(1)高载药能力;(2)由于纳米结构由定制的单个分子共轭物形成,因此可以精确控制药物负载;(3)通过简单优化分子设计即可轻松调整 NPs 的物理化学特性;
第 12 章 有丝分裂抑制剂的故事 – 长春花 – 紫杉醇 221009dj3 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发育治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 12 章 有丝分裂抑制剂的故事:紫杉醇和长春花。 本章介绍的抗癌药物是在某些植物或海洋生物中发现的毒素,它们可以阻断在有丝分裂过程中将染色体拉开的微管。微管还将必需分子沿着神经细胞的轴突向下传送,这就是这些药物会损害神经细胞的原因。 来自天然产物的抗癌药物 自然界的动物、植物和微生物充满了生物战剂,不同物种之间会发生冲突。天然毒药可以抵御捕食者和竞争对手。有些药物历来被人们用来下毒或治病。有些药物被用作治疗癌症的药物(Cragg 和 Newman,2004;Vindya 等人,2015)。由于这些药物也是毒药,因此,与大多数用于癌症化疗的药物一样,必须仔细调整给患者的剂量,以在不产生过多毒性的情况下对癌症产生显著作用。那么,这些微管毒药是如何起作用的呢?在有丝分裂期间,新形成的染色体对被称为微管的纤维拉开。然后每个子细胞都会得到一对新形成的染色体对,尽管癌细胞通常有异常的有丝分裂,从而产生具有异常染色体组的细胞。抗微管药物的主要作用是削弱有丝分裂时的细胞分裂。然而,与大多数癌症化疗一样,这些微管结合药物仅对那些比关键正常组织对它们更敏感的癌症有效。我将讲述两类抗微管药物的故事,它们
1. 简介 乳腺癌 (BC) 是全球女性中最常见且最致命的癌症类型。尽管 BC 治疗有所改进,但局部区域复发和远处转移仍然存在 (Guo et al., 2019)。癌症干细胞 (CSC) 被证明是当今治疗效果不佳的主要原因之一。CSC 是一小群细胞,与构成整体肿瘤的致瘤性较低的癌细胞不同,具有自我更新和分化为许多不同细胞的能力 (Mertins, 2014; Phi et al., 2018)。然而,据估计,这些细胞不仅是新肿瘤形成的原因,也是对复发和化疗产生抗性的原因 (Ari et al., 2013; Aztopal et al., 2018; Mertins, 2014; Phi et al., 2018)。近年来的研究支持了这一假设,并揭示了许多因素导致CSC的分化(Aztopal et al., 2018; Mertins, 2014; Phi et al., 2018)。