a Xelect Ltd,Horizon House,苏格兰圣安德鲁斯 KY16 9LB,英国 b 综合遗传学中心,动物与水产养殖科学系,生物科学学院,挪威生命科学大学,挪威 Ås c 巴黎-萨克雷大学,国家农业研究所 (INRAE),法国 Jouy-en-Josas d 比较生物医学和食品科学系,意大利帕多瓦大学 e 欧洲分子生物学实验室,欧洲生物信息学研究所,Wellcome 基因组园区,欣克斯顿,剑桥,剑桥郡 CB10 1SD,英国 f INRAE,LPGP,鱼类生理学和基因组学,雷恩 F-35000,法国 g 海洋生物、生物技术和水产养殖研究所 (IMBBC),希腊海洋研究中心 (HCMR),伊拉克利翁,希腊 h 圣地亚哥德孔波斯特拉大学动物学、遗传学和体质人类学系,西班牙卢戈i 英国爱丁堡大学罗斯林研究所和皇家(迪克)兽医学院
许多病原体,包括疟原虫,都会产生专门的生命阶段,用于在宿主体内繁殖和向外传播。能够加快繁殖速度的特性(包括对传播阶段的有限投入)应该会使宿主健康面临更大的风险(在其他条件相同的情况下)。然而,尚不清楚为什么寄生虫没有进化出更快的繁殖速度,因为疟原虫似乎并不遵循传统预测会限制寄生虫进化的传播速度和持续时间之间的权衡。为了解决这个难题,我们引入了一个感染年龄结构的宿主内数学模型,该模型结合了动态免疫清除,以研究潜在的权衡并了解寄生虫如何优化其传播投资。当投资在所有感染年龄中保持不变时,增加传播投资会减少感染持续时间和寄生虫适应度,最佳投资发生在相对较低的值(约 5%),远低于从缺乏寄生虫投资和免疫清除之间动态反馈的模型中恢复的最佳值。对于年龄变化策略,我们的模型表明,疟原虫可以通过延迟传播投资来提高其适应性,从而最初在宿主内更快地繁殖。我们的结果表明,适应性免疫可以施加生存-繁殖权衡,这解释了为什么疟原虫无法在宿主内更快地进化。我们的理论框架为理解传播投资策略如何改变疟疾感染生命周期内的传染时间提供了基础,这对寄生虫响应控制努力的进化具有影响。
恢复缺乏减数分裂辅酶的染色体基因座中的减数分裂重组(Schmidt等,2020; R r€Onspies等,2022)。相比之下,多个或“丰富”的重排通常会导致减少减数分裂染色体的分离和非整倍型配子,从而损害了植物的生存能力(Heng,2019年)。许多核型重排可能会导致密切相关的加入之间的生殖屏障,从而导致物种的早期步骤(Lucek等,2023)。这些“丰富”的染色体重排通常由涉及影响一个或多个染色体的几十个断点(甚至数百个)的重排的复杂组合,从而导致结构和/或数值核型变化(Schubert,2024)。在“ Chromoana-Genesis”事件期间出现了多个同时重排,这是由“灾难性”现象引起的,例如DNA复制期间的压力,DNA修复缺陷,暴露于遗传毒性剂(Guo等人,2023年,2023年)或异常的Centromere Centromere行为(目前的审查的重点)。大多数受许多重排影响的生物或细胞可能灭亡。然而,具有可行的新型核型的一小部分可能会持续存在,从而导致基因流势和潜在触发物种(Lucek等,2023)。观察到密切相关的物种在其核型排列中可能会有很大差异,这支持了这一假设。染色体。(2023),在Hoang等人中看到了一些假定的例子。(2022)和Tan等。(2023)。(2024)和Martin等。最近在Lucek等人中回顾了核型变化的核型变化。(2023)在Ferguson等人中看到的植物中有一些最新推定的例子。(2020)。
摘要 蚯蚓堆肥是将有机化合物生物降解为有助于植物生长的营养腐殖质的传统方法。压泥是甘蔗工业的废弃物之一,具有丰富的有机成分。在本研究中,压泥与生物炭结合进行蚯蚓转化。使用 Eudrlius eugeniae 将不同浓度(0、2、4 和 6%)的压泥和牛粪以三种不同的比例(1:1、2:1 和 3:1)添加到生物炭中,以产生增强的蚯蚓堆肥。在添加生物炭的蚯蚓堆肥组合中,蚯蚓的生长和生物量都有所增加,其中添加 4% 生物炭的 C7(PM+CD(2:1)和添加 6% 生物炭的 C4(PM+CD(1:1))的蚯蚓生长和生物量均达到最大值。微生物和酶水平分析表明,添加生物炭的组合比未添加生物炭的组合效果更好。总体而言,添加 4% 生物炭的组合 C3(PM+CD(2:1)在微生物和酶分析中效果最好,在第 45 天达到最大值。添加生物炭的组合的腐殖化作用也更好,最终样品中腐殖化指数最低的分别是添加 4% 和 6% 的压泥+牛粪的 C3(0.6820±0.027)和 C4(0.6912±0.031)。这项研究表明,添加 4% 浓度的生物炭对蚯蚓堆肥的腐殖化作用优于未添加生物炭的组合。以压泥为基质的 6% 和 C3 与 C4 的组合对蚯蚓的生长和繁殖有较好的促进作用。基质的腐殖化活性在分别添加 4% 和 6% 生物炭的 C3 和 C4 组合中也达到最大值。关键词:蚯蚓堆肥、压泥、蚯蚓转化、生物炭、蚯蚓
越来越多的大学实验室,初创企业和技术巨头(例如Meta,Google和Microsoft)正在为生物技术和基因工程创造生成人工智能(AI)工具。他们采用了聊天机器人或诸如dall-e的图像发生器等聊天机器人中使用的扩散和大型语言模型的AI体系结构,并用蛋白质和基因组序列训练它们的“语言”。这导致工具正在从根本上改变遗传工程用来干预生物的遗传物质的方式。配备了改进的描述性功能,新的AI模型使模拟基因工程对计算机的影响成为可能。由于它们的生成能力,AI模型甚至可以设计功能性DNA和RNA序列以及蛋白质,并且该进化尚未产生,并且在技术术语中尚未产生“新到自然”。
的学术卓越,在20个部门提供了本科和研究生课程。占地49英亩,可容纳3,000多名学生和80名教职员工。SDSUV负责217所关联学院,在北阿坎德邦(Uttarakhand)的120,000多名学生为科学,商业,艺术,农业和瑜伽科学等各种领域的学生提供服务。大学旨在将现代教育与区域需求融合,促进知识的进步和研究,特别是面对地理和
1 细胞与分子生物学、微生物学和免疫学系,乌普萨拉大学,Bo x 596,SE-751 24 乌普萨拉,瑞典 2 瑞典农业科学大学(SLU)生态学系,Box 7044,SE-750 07 乌普萨拉,瑞典 3 查尔姆斯理工大学生命科学、食品与营养科学系,SE-412 96 哥德堡,瑞典 4 VA-guiden Sverige AB,Östra ˚A gatan 53, 4 tr,SE-753 22 乌普萨拉,瑞典 5 格林威治大学自然资源研究所,Central Avenue,Chatham Maritime,Kent ME4 4 TB,英国 ∗ 通讯作者。细胞与分子生物学、微生物学和免疫学系,乌普萨拉大学,Bo x 596,SE-751 24 乌普萨拉,瑞典。电子邮件: olle.terenius@icm.uu.se 编辑: [Martin W. Hahn]
植物的发育和繁殖是一个复杂的过程,在这个过程中,一个个体完成其生命周期,从发芽、新器官的形成和生长开始,导致生殖结构的形成,并最终终止于下一代的产生。这些机制是长期进化历史的结果,导致了涉及多层次调节器的复杂调节机制。微小RNA(miRNA)是一类小调节分子,通过负面控制靶基因在调控网络中发挥关键作用。自二十年前首次发现miRNA以来,它们作为植物发育的重要调节器的作用引起了人们的极大兴趣。在这篇评论中,我们提出了对miRNA在植物发育和繁殖过程中的重要性的全面和批判性分析。我们首先介绍目前对 miRNA 的进化史、生物发生、作用方式、在调控网络中的位置以及它们作为移动分子的潜力的理解,探索这些方面如何有助于它们在植物发育和繁殖中发挥作用。然后,我们探索用于有效分析其作用的遗传策略,重点关注基因组编辑技术的最新进展。接下来,我们重点关注 miRNA 对四个关键过程的贡献:生长、器官模式和身份、生命周期进展和繁殖。通过这种分析,miRNA 在植物发育和繁殖过程中的重要性显现出来,最后我们根据目前对 miRNA 在动物发育过程中的作用的看法进行讨论。
蝗虫响应人口密度变化而表现出表型可塑性,在孤立和群体阶段中具有不同的表型。在过去的十年中,许多研究揭示了阶段变化的分子机制,其中包括身体着色,信息素,行为,飞行,繁殖力,免疫力和衰老的变化。我们对与这些表型差异相关的分子机制的不明白,随着蝗虫基因组的解码,宽度和深度扩大了,涉及转录,转录后,翻译和表观遗传调节。由基因和非编码RNA组成的大规模调节网络反映了响应环境变化的蝗虫相变的系统修饰。基因操纵技术已验证了相变的特定基因和相关路径的功能。本评论重点介绍了蝗虫阶段变化研究的最新进展,并表明在群落和孤立的蝗虫中,能量和代谢分配的分歧分别是长距离迁移和局部生殖的适应性策略。最后,我们提出了未来的研究方向,并讨论了蝗虫表型可塑性领域的新兴问题。
联系人:斯洛伐克共和国的育种服务,Š。 p。遗传学实验室,Hlohovecká7,951 41Lužianky电话。:+421 37 778 30 87,手机:0905 700 932,手机:0905 700 951电子邮件:upznr@pssr.sk,www.pssr.sk