立即发布 艺术科学博物馆在未来世界展览中推出全新重要数字艺术作品,展览展出 19 个探索艺术与科学的尖端数字艺术装置 新加坡(2020 年 2 月 27 日)——作为展览最新重新开发的一部分,广受欢迎的“未来世界:艺术与科学的交汇处”的参观者将从 3 月 14 日起体验到 teamLab 的五件令人兴奋的全新数字艺术作品。未来世界被设想为一个永久性展览,它挑战了传统的艺术博物馆观念和人们体验艺术的方式。未来世界融合了艺术、技术和科学,由一系列不断变化和演变的环境组成,欢迎所有年龄段的参观者探索并成为其中的一部分。自 2016 年推出以来,它已经带领超过 200 万参观者踏上了四个主要区域——花园城市、庇护所、公园和空间——的探索之旅。teamLab 的四件全新数字艺术作品将在展览的开幕画廊“花园城市”中展出。这些作品包括在东南亚首次亮相的《繁衍无限生命,每年一整年》——一幅巨大的盛开花朵互动壁画。Sanctuary 画廊还将展出新版《鸟儿之路》,这是一个令人惊叹的装置,探索了鸟群神秘的运动。艺术科学博物馆执行馆长 Honor Harger 表示:“艺术科学博物馆很高兴在《未来世界》中推出一系列由 teamLab 创作的非凡新作品。这些新作品完美地体现了 teamLab 对艺术表达、技术独创性、科学探究和引人入胜的视觉吸引力的流畅结合。这些装置探索了生命的无常、自然界的周期性、气候变化和东方哲学。它们表明,teamLab 的实践不仅限于创作有趣的互动作品。他们的作品还能对观众产生深远的情感和哲学影响。当我们考虑到当今社会面临的一些紧迫问题时,产生这种影响的能力就变得非常重要。” teamLab 发言人表示:“‘未来世界’是 teamLab 首次举办的大型常设展览,挑战了人们对艺术博物馆的传统观念、人们体验艺术的方式以及艺术市场本身。在艺术科学博物馆,我们将继续与他人共同创造物理探索的体验,拓展人们的价值观和创造力。”
地球被恰当地描述为一个沿海星球( Martínez 等人,2007 )。沿海区被定义为距离海岸不到 100 公里且海拔不到 10 米的陆地,是地球表面水体与陆地之间的线性界面,长度超过 160 万公里。地球表面的这一重要特征非常长,可以绕赤道 402 圈( Martínez 等人,2007 )或延伸到月球并返回两圈。虽然沿海海洋占全球海洋表面面积的 8%( Cracknell,1999 ),但它占海洋有机物总量的 14-30%( Gattuso 等人,1998 )。沿海海洋(指海岸与大陆架边缘之间的海洋区域)和相关的沿海环境处于气候变暖的前沿。二氧化碳浓度不断上升,导致大气变暖,目前年均浓度接近 420 ppm(https://www.esrl.noaa.gov),导致海平面上升,并可能导致沿海水文、洋流和天气发生变化。冰川和冰盖融化导致海平面上升,有可能导致沿海社区被淹没(Vitousek 等人,2017 年)以及沿海侵蚀加剧(Zhang 等人,2004 年),而海水变暖预计将加剧热带气旋的严重程度(Sobel 等人,2016 年)。有记录显示,随着气候变暖趋势导致热带物种向极地迁移( Pinsky 等人,2013 ),珊瑚礁发生大规模白化( Heron 等人,2017 ),海洋生态系统生物多样性遭到破坏。除了气候因素外,不断增长的沿海人口也对他们生存和繁衍所需的海洋服务施加了压力。目前,全球 27% 的人口生活在沿海地区( Kummu 等人,2016 )。预计到本世纪中叶,这一人口将增加近一倍( Neumann 等人,2015 ),这将增加不断变化的沿海环境的压力。过去 100 年里,人类对沿海资源的依赖和开发导致沿海和内陆水生栖息地发生越来越剧烈的变化( Turpie 等人,2017 )。目前,全球人均海产品消费量占所有动物蛋白的 6%,是国际贸易量最大的食品商品(Smith 等人,2010 年)。水产养殖在消费海产品供应中所占的比例越来越大。随着人口增长和气候变化,这一趋势预计将持续下去(Wells 等人,2015 年)。此外,沿海水生栖息地的压力导致了许多对人类和水生生态系统有害的浮游植物物种的出现(Anderson 等人,2002 年)。例如,水产养殖产生的废弃营养物会助长有害藻华(HAB)的形成。有毒的赤潮和无毒或入侵性浮游植物物种的过度生长会破坏生态系统的功能,并影响食物和水资源。这些变化主要源于人为的富营养化(Glibert 等人,2005 年;Anderson,2009 年)。过量的藻类会降低光线的穿透力,对水柱和底栖生物的光合作用产生负面影响。一些藻华的生长速度可能快于自然食草动物的消耗速度。
格式 C-19、F-19-1、Z-19(通用)1.研究初始背景 (1)在养殖虎斑河豚时,每只虎斑河豚需剪牙1-2次,防止其被咬而死亡或掉鳍,降低鱼的商业价值。牙齿切割工序由熟练的人员逐一进行,因此非常繁琐。此外,还对鱼造成负担,包括麻醉和术后需要治愈嘴部周围的伤口。从生产率和动物福利的角度来看,希望制定措施来减轻这项工作的负担。 在虎斑河豚养殖中,一般以颗粒饲料作为食物,因此不需要用大牙齿来咬碎壳或撕碎肉。即使它们的牙齿发育不全,但由于它们能够吸入和食用复合饲料,因此它们能够充分生长。另一方面,如果养殖的虎斑河豚从笼子里逃出到海里,牙齿发育不全的个体咬合力会降低,从而降低它们在野外捕食的能力。因此,它们的生存能力将低于野生鱼类,也更难以繁衍下一代。这被认为有助于防止养殖鱼类的遗传偏差基因传播到自然界,因此预计在保护遗传资源方面具有重要价值。 硬骨鱼牙齿和哺乳动物牙齿被认为是生物体产生的最坚硬的组织结构。这两种牙齿都具有功能和形态相似的最外层结构,称为牙釉质(硬骨鱼)和牙釉质(哺乳动物)。此前人们认为,虽然硬骨鱼的牙齿与哺乳动物的牙齿在形态上相似,但由于两者的晶体结构不同,且牙齿中的组织来源于不同的结缔组织,因此它们是分别进化的类似器官(参考文献1)。但是,2005年,美国发现了与河豚门牙形成有关的一个基因群,即分泌性钙结合磷蛋白(SCPP)的存在(参考文献2)。通过分子进化分析发现,该基因群是所有脊椎动物牙齿在进化过程中共同参与的牙齿组织矿化的主要基因群(参考文献3)。 (2)在个体中,单碱基替换突变有:1.通过在蛋白质编码区创建终止密码子来抑制基因功能;2.通过氨基酸替代来降低或改变蛋白质的功能,3.人们认为表达调控区的突变会导致基因表达的增加或减少。因此,人工诱导单碱基替换突变的技术是分析基因功能的技术之一。 此前,我们已开发出利用化学诱变剂诱发单碱基置换突变的TILLING法,从适用于小型养殖鱼的传统方法(参考文献4~7),发展成为适用于养殖鱼精子和卵子的安全实用的突变引入技术(突变引入率为0.4%)(参考文献7)。利用该技术,对约300尾突变的虎斑河豚进行了9个SCPP基因突变的有无检测,发现了数尾SCPP2基因氨基酸取代的突变个体,但并未观察到牙齿缺损等明显症状。 近年来,基因组编辑技术作为一种可以针对特定基因引入突变的技术,在育种领域受到广泛关注。其中,CRISPR方法不仅比以往的ZFN、TALEN方法实施效果显著提高,而且操作也相对简单,目前已在多个领域得到应用并有报道结果(参考文献8)。在日本,真鲷和虎河豚是首批由民间企业上市的基因组编辑养殖鱼。预计未来基因组编辑鱼在水产养殖中的应用将变得更加广泛。 因此,我们开展了这个项目,因为我们认为使用 CRISPR/Cas 系统(最通用的基因组编辑技术,可以直接针对特定基因的碱基序列)一次性将突变引入所有目标 SCPP 基因是有效的。 2.研究目标:(1)利用突变导入技术CRISPR/Cas系统,对9种门牙形成基因同时导入多种突变,并通过对各个个体门牙的形态分析,识别出在虎斑河豚门牙形成过程中起关键作用的基因。 (2)为了减少今后虎河豚养殖中所需的切牙工作量,我们将通过基因功能分析培育出门牙形成率低的虎河豚个体,为生产门牙形成率低的虎河豚品种奠定基础(图1)。
1。Cooke R,Goulet O,Huysentruyt K,Joosten KFM,Khadilkar AV,Mao M等。追赶婴儿和幼儿步履蹒跚的增长的增长:指导普通临床医生的专家意见。小儿胃肠病学和营养学杂志。2023; 77。2。Tang MN,Adolphe S,Rogers SR,Frank DA。 未能繁衍或成长动摇:医疗,发展/行为,营养和社会层面。 评论中的儿科。 2021; 42(11)。 3。 Simmonds M,Llewellyn A,Owen C,Woolacott N.从儿童肥胖症中预测成人肥胖症:系统评价和荟萃分析。 肥胖评论。 2016; 17。 4。 Llewellyn A,Simmonds M,Owen C,Woolacott N.儿童肥胖症作为成年发病率的预测:系统评价和荟萃分析。 肥胖评论。 2015; 17:56-67。 5。 Zheng M,Lamb KE,Grimes C,Laws R,Bolton K,Ong KK,Campbell K.婴儿期和随后的肥胖症的快速体重增加:系统的审查和证据分析。 Obes Rev. 2018; 19(3):321-32。 6。 Nichols J. 婴儿和青春期前儿童的正常生长模式:上升; 2022。 可从:https://www-uptodate- com.pklibresources.health.wa.gov.au/contents/normal-growth-patterns-infantns-infants-infants-and-prepubertal-children。 7。 Balusundaram P,Avulakunta I. 人类的成长与发展:statpearls; 2024。 可从以下网站获得:https://www.ncbi.nlm.nih.gov/books/nbk567767/。 8。 2018; 15:3。Tang MN,Adolphe S,Rogers SR,Frank DA。未能繁衍或成长动摇:医疗,发展/行为,营养和社会层面。评论中的儿科。2021; 42(11)。3。Simmonds M,Llewellyn A,Owen C,Woolacott N.从儿童肥胖症中预测成人肥胖症:系统评价和荟萃分析。肥胖评论。2016; 17。 4。 Llewellyn A,Simmonds M,Owen C,Woolacott N.儿童肥胖症作为成年发病率的预测:系统评价和荟萃分析。 肥胖评论。 2015; 17:56-67。 5。 Zheng M,Lamb KE,Grimes C,Laws R,Bolton K,Ong KK,Campbell K.婴儿期和随后的肥胖症的快速体重增加:系统的审查和证据分析。 Obes Rev. 2018; 19(3):321-32。 6。 Nichols J. 婴儿和青春期前儿童的正常生长模式:上升; 2022。 可从:https://www-uptodate- com.pklibresources.health.wa.gov.au/contents/normal-growth-patterns-infantns-infants-infants-and-prepubertal-children。 7。 Balusundaram P,Avulakunta I. 人类的成长与发展:statpearls; 2024。 可从以下网站获得:https://www.ncbi.nlm.nih.gov/books/nbk567767/。 8。 2018; 15:3。2016; 17。4。Llewellyn A,Simmonds M,Owen C,Woolacott N.儿童肥胖症作为成年发病率的预测:系统评价和荟萃分析。肥胖评论。2015; 17:56-67。 5。 Zheng M,Lamb KE,Grimes C,Laws R,Bolton K,Ong KK,Campbell K.婴儿期和随后的肥胖症的快速体重增加:系统的审查和证据分析。 Obes Rev. 2018; 19(3):321-32。 6。 Nichols J. 婴儿和青春期前儿童的正常生长模式:上升; 2022。 可从:https://www-uptodate- com.pklibresources.health.wa.gov.au/contents/normal-growth-patterns-infantns-infants-infants-and-prepubertal-children。 7。 Balusundaram P,Avulakunta I. 人类的成长与发展:statpearls; 2024。 可从以下网站获得:https://www.ncbi.nlm.nih.gov/books/nbk567767/。 8。 2018; 15:3。2015; 17:56-67。5。Zheng M,Lamb KE,Grimes C,Laws R,Bolton K,Ong KK,Campbell K.婴儿期和随后的肥胖症的快速体重增加:系统的审查和证据分析。 Obes Rev. 2018; 19(3):321-32。 6。 Nichols J. 婴儿和青春期前儿童的正常生长模式:上升; 2022。 可从:https://www-uptodate- com.pklibresources.health.wa.gov.au/contents/normal-growth-patterns-infantns-infants-infants-and-prepubertal-children。 7。 Balusundaram P,Avulakunta I. 人类的成长与发展:statpearls; 2024。 可从以下网站获得:https://www.ncbi.nlm.nih.gov/books/nbk567767/。 8。 2018; 15:3。Zheng M,Lamb KE,Grimes C,Laws R,Bolton K,Ong KK,Campbell K.婴儿期和随后的肥胖症的快速体重增加:系统的审查和证据分析。Obes Rev.2018; 19(3):321-32。6。Nichols J.婴儿和青春期前儿童的正常生长模式:上升; 2022。可从:https://www-uptodate- com.pklibresources.health.wa.gov.au/contents/normal-growth-patterns-infantns-infants-infants-and-prepubertal-children。7。Balusundaram P,Avulakunta I.人类的成长与发展:statpearls; 2024。可从以下网站获得:https://www.ncbi.nlm.nih.gov/books/nbk567767/。8。2018; 15:3。2018; 15:3。Jansen E,Williams KE,Mallan KM,Nicholson JM,Daniels LA。 母亲的喂养做法与儿童饮食行为之间的双向关联。 国际行为营养与体育锻炼杂志。 9。 duryea tk。 在资源丰富的环境中,年龄在两岁以下的儿童中体重增加不佳:病因和评估。 :uptodate; 2023。 Available from: https://www- uptodate-com.pklibresources.health.wa.gov.au/contents/poor-weight-gain-in-children- younger-than-two-years-in-resource-abundant-settings-etiology-and-评估?搜索=差%20种&source = search_result&SelectedTitle = 3〜150&usage_ty pe =默认&display_rank = 3。 10。 世界卫生组织。 谁儿童成长标准。 2009。 11。 Beker L.增长评估原则。 评论中的儿科。 2006; 27(5)。 12。 加拿大的加拿大儿科学会和加拿大营养师。 使用新的WHO增长图表的卫生专业人员指南。 儿科儿童健康。 2010; 15。 13。 加拿大预防性医疗保健工作组。 针对年龄和肥胖症的增长监测,预防和管理初级保健中的超重和肥胖症的建议。 加拿大医学协会杂志。 2015; 187(6):411。 14。 Griffin IJ。 术前婴儿的增长管理[互联网]:最新的; 2023 [引用2024年2月]。 15。 营养。 2020 Jun 30; 12(7)。 高血压。 2012年2月; 59(2):226-34。Jansen E,Williams KE,Mallan KM,Nicholson JM,Daniels LA。母亲的喂养做法与儿童饮食行为之间的双向关联。国际行为营养与体育锻炼杂志。9。duryea tk。在资源丰富的环境中,年龄在两岁以下的儿童中体重增加不佳:病因和评估。:uptodate; 2023。Available from: https://www- uptodate-com.pklibresources.health.wa.gov.au/contents/poor-weight-gain-in-children- younger-than-two-years-in-resource-abundant-settings-etiology-and-评估?搜索=差%20种&source = search_result&SelectedTitle = 3〜150&usage_ty pe =默认&display_rank = 3。10。世界卫生组织。谁儿童成长标准。2009。11。Beker L.增长评估原则。评论中的儿科。2006; 27(5)。 12。 加拿大的加拿大儿科学会和加拿大营养师。 使用新的WHO增长图表的卫生专业人员指南。 儿科儿童健康。 2010; 15。 13。 加拿大预防性医疗保健工作组。 针对年龄和肥胖症的增长监测,预防和管理初级保健中的超重和肥胖症的建议。 加拿大医学协会杂志。 2015; 187(6):411。 14。 Griffin IJ。 术前婴儿的增长管理[互联网]:最新的; 2023 [引用2024年2月]。 15。 营养。 2020 Jun 30; 12(7)。 高血压。 2012年2月; 59(2):226-34。2006; 27(5)。12。加拿大的加拿大儿科学会和加拿大营养师。使用新的WHO增长图表的卫生专业人员指南。儿科儿童健康。2010; 15。13。加拿大预防性医疗保健工作组。针对年龄和肥胖症的增长监测,预防和管理初级保健中的超重和肥胖症的建议。加拿大医学协会杂志。2015; 187(6):411。 14。 Griffin IJ。 术前婴儿的增长管理[互联网]:最新的; 2023 [引用2024年2月]。 15。 营养。 2020 Jun 30; 12(7)。 高血压。 2012年2月; 59(2):226-34。2015; 187(6):411。14。Griffin IJ。 术前婴儿的增长管理[互联网]:最新的; 2023 [引用2024年2月]。 15。 营养。 2020 Jun 30; 12(7)。 高血压。 2012年2月; 59(2):226-34。Griffin IJ。术前婴儿的增长管理[互联网]:最新的; 2023 [引用2024年2月]。15。营养。2020 Jun 30; 12(7)。 高血压。 2012年2月; 59(2):226-34。2020 Jun 30; 12(7)。高血压。2012年2月; 59(2):226-34。可从:https://www-uptodate-com.pklibresources.health.wa.gov.au/contents/growth-management-in-preterm- butts?Ceratto S,Savino F,Vannelli S,De Sanctis L,Giuliani F.从出生到学龄前儿童的早产儿童的成长评估。16。DeJong F,Monuteaux MC,Van Elburg RM,Gillman MW,Belfort MB。对早产和后来的收缩压的系统评价和荟萃分析。17。歌曲IG。早产儿的神经发育结果。Clin Exp Pediatr。2023 Jul; 66(7):281-7。PubMed PMID:36596743。PubMed Central PMCID:PMC10331553。EPUB 20221230。
当您沿着蜿蜒的小路攀登到以色列的卡梅尔山洞穴时,很容易想象到史前时期的郁郁葱葱的环境。地中海气候四季温和宜人,温度波动适中。附近的小溪提供了可靠的饮用水源,而周围的森林里充满了野生动物,包括鹿、瞪羚、犀牛和野猪。相邻的山谷是史前谷物和果树的家园。卡梅尔山洞穴是数千年来众多狩猎采集者的理想场所,提供温暖气候、生态多样性和原材料的独特组合。该遗址现已被列为联合国教科文组织世界遗产,考古发现揭示了一系列跨越数十万年的史前定居点,智人和尼安德特人之间可能存在接触。随着人类进化的不断推进,我们的祖先掌握了新的技能,掌握了使用火的方法,并创造了越来越复杂的工具,这些工具由燧石和石灰石制成。这些进步背后的关键驱动力是人类大脑的显著增长和复杂性。人类大脑非同寻常,其体积大、压缩性强、复杂性是其他物种无法比拟的。在过去的六百万年里,人类大脑的体积增加了两倍,其中大部分转变发生在 20 万至 80 万年前。然而,这种增长并不是人类独有的;为什么我们发展出了如此先进的大脑,而其他物种却没有实现类似的认知飞跃?一种可能的解释是,拥有先进的大脑使我们能够实现地球上其他物种无法比拟的安全和繁荣水平。然而,现实情况更加复杂。趋同进化是一种现象,即相似的特征在不同物种中独立出现。例如,昆虫、鸟类、蝙蝠、鱼类和海洋哺乳动物都发展出了独特的体形,以在水下生存。然而,人类拥有独特的能力,可以创作复杂的艺术、文学和哲学作品,以及发明犁、轮子和互联网等技术——而这些技术在我们这个物种中只进化过一次。尽管有这么多优势,但为什么这种强大的大脑在自然界中如此罕见?答案部分在于两个主要缺点:它消耗大量能量(占身体总能量的 20%),而且大脑体积大,使分娩更加困难。因此,人类婴儿出生时大脑发育不全,需要数年才能成熟。这种脆弱性促使研究人员研究驱动大脑发育的力量。生态假说认为,环境压力推动了人类大脑的进化,因为我们的祖先适应了不断变化的气候和栖息地。那些拥有更高级大脑的人可以找到新的食物来源、制定策略并开发技术来生存。社会假说认为,复杂社会中合作、竞争和贸易的需求为那些拥有更复杂大脑的人提供了进化优势。此外,说服、操纵、奉承、讲述和取悦他人的能力(这些对于社会地位和生存都至关重要)刺激了大脑的发育和语言能力。文化假说强调了人类大脑吸收信息并将其代代相传的能力,这使得人类能够有效地从过去的经验中学习,并提高在不同环境中的生存能力。人类婴儿的身体无助掩盖了他们大脑独特的学习能力,这种能力使他们能够掌握和保留有助于生存的文化规范。性选择可能也发挥了一定作用,人类会偏爱拥有先进大脑的配偶,即使他们没有明显的进化优势。这些复杂的大脑可能发出了对保护和抚养孩子很重要的隐形品质,使潜在的伴侣更具吸引力。人类大脑的进化推动了人类独特的进步,推动了技术进步。这种迭代机制导致了技术越来越复杂,而这些技术反过来又塑造了未来的进化过程,使人类能够适应不断变化的环境并进一步发展他们的技术。值得注意的是,对火的掌握使早期人类能够烹饪食物,通过减少消化的能量消耗,释放颅骨空间,刺激了大脑的进一步生长。这种强化循环可能促进了烹饪技术的创新,从而导致大脑进一步发育。人类的手也随着技术的发展而进化,特别是狩猎工具和烹饪用具。当人类掌握了石雕和木矛制作技术后,熟练的猎人获得了进化优势,可以更可靠地养家糊口,并将更多孩子抚养成人。这种性质的正反馈循环在整个历史中都出现了:环境变化和技术创新促进了人口增长,并引发了对新栖息地和工具的适应;反过来,这些适应增强了我们操纵环境和创造新技术的能力。这个循环对于理解人类的旅程和解开成长之谜至关重要。数百万年来,人类以小群体的形式在非洲繁衍生息,不断提高技术、社交和认知能力。随着他们成为更熟练的狩猎者和采集者,他们的数量显著增加,最终导致生存空间和资源短缺。一旦环境条件允许,人类就开始向其他大陆扩张,寻找新的肥沃地区。大约两百万年前,第一个人类物种直立人传播到欧亚大陆。尽管早期智人确实走出了非洲,他们最终灭绝或因冰河时期恶劣的气候条件而撤退到非洲。大约 15 万年前,在非洲,所有现代人类的共同祖先出现了。这位非洲女性的血统最终催生了当今地球上的所有人类种群。被广泛接受的“走出非洲”理论认为,早在 6 万至 9 万年前,智人就大规模迁徙离开非洲,导致解剖学上的现代人类在全球传播。这些早期人类通过两条主要路线迁徙:一条经黎凡特,另一条经阿拉伯半岛。他们在 7 万多年前到达东南亚,大约 47,000-65,000 年前到达澳大利亚,近 45,000 年前到达欧洲,大约 25,000 年前到达白令海峡,并最终在大约 14,000-23,000 年前深入美洲。随着人类定居在新的环境中,他们获得了新的资源,并开始迅速繁衍。这种增长带来了更大的技术多样性,促进了创新和人口进一步扩张。然而,随着人口的增长,肥沃的土地和资源也越来越稀缺,最终迫使人类走向另一种生存方式:农业。智人的转变是惊人的。随着人们逐渐从游牧生活方式转向定居生活,全球的艺术、科学、写作和技术都取得了重大进步。值得注意的是,位于黎凡特的纳图夫文化(公元前 13,000-9500 年)的考古证据表明,一些社区在农业开始之前就过渡到永久性住所,这与传统理解相矛盾。尽管这些早期定居者主要是狩猎采集者,但他们住在稳定的住宅中,这些住宅由干石地基和灌木丛上层建筑建造而成。然而,对于当时的大多数人类来说,正是向农业的过渡推动了定居主义的发展。农业革命,又称新石器革命,最早出现在肥沃的新月地带——底格里斯河和幼发拉底河沿岸,一直延伸到埃及的尼罗河三角洲——那里繁衍生息着大量可驯化的动植物物种。这场革命迅速蔓延到整个欧亚大陆,因为它东西走向,便于动植物和技术的传播,没有遇到重大障碍。然而,撒哈拉以南非洲和美洲的可驯化物种较少,由于南北走向,这一转变发生得晚得多,导致不同地区之间的气候和土壤存在显著差异。撒哈拉沙漠和中美洲的热带雨林是阻碍这一传播过程的天然屏障。尽管存在这些挑战,这种转变——从狩猎采集部落到农业社会,从游牧生活方式到定居生活——在几千年的新石器革命期间传播到了人类的大部分地区。这一时期,人类在世界各地驯养了大量的野生动植物。为了像牛顿对物理学或达尔文对生物学那样彻底改变经济学领域,奥德·加洛尔的杰作《人类之旅》大胆尝试撰写人类的经济史。这本简明而全面的书跨越数千年,涵盖了全球历史,让人想起贾里德·戴蒙德的《枪炮、病菌与钢铁》和尤瓦尔·诺亚·哈拉里的《人类简史》。作者探讨了一些国家增长而其他国家停滞不前的原因,为人类从起源到现代世界的漫长历程提供了引人入胜的描述。这本书的范围和抱负无与伦比,提供了精妙、雄辩且博学的探索,探讨了当今国家之间惊人的贫富差距的原因。奥德·加洛尔的《人类之旅》全面介绍了全球经济史,为现代世界提供了独特的视角。本书深入探讨了影响人类进步的各种因素,包括教育、家庭规模和性别平等。这位学者是布朗大学著名的经济学教授,他开创了统一增长理论,探索人类历史上进步、繁荣和不平等的根本驱动因素。凭借一生积累的丰富知识,他与世界各地的知名观众分享了他的发现。他的最新作品《人类之旅》现已在全球以 28 种语言出版。本书深入探讨了影响人类进步的各种因素,包括教育、家庭规模和性别平等。这位学者是布朗大学著名的经济学教授,他开创了统一增长理论,探索人类历史上进步、繁荣和不平等的根本驱动因素。凭借一生积累的丰富知识,他与世界各地的知名观众分享了他的发现。他的最新作品《人类之旅》现已在全球以 28 种语言出版。本书深入探讨了影响人类进步的各种因素,包括教育、家庭规模和性别平等。这位学者是布朗大学著名的经济学教授,他开创了统一增长理论,探索历史上人类进步、繁荣和不平等的根本驱动因素。凭借一生积累的丰富知识,他与世界各地的知名观众分享了他的发现。他的最新作品《人类之旅》现已在全球以 28 种语言出版。