镰状细胞疾病(SCD)是一种遗传性血液疾病,这是由于β-珠蛋白基因(HBB)的单点突变导致了多个系统的表现,并且会影响全球数百万的人。疾病的单基质和自体造血干细胞(HSC)的可用性使这种疾病成为基因修饰策略的理想候选者。值得注意的是,在过去的十年中进行的基因疗法和基因组编辑领域的显着进步使得有可能制定多种SCD治疗的策略。这些治疗方法是第一个基于对患者特定,有效且安全的选择有望纠正引起疾病的突变的。,研究了利用指向同源性修复途径的基因编辑方法,但是很快,他们在静止的HSC中有限的效率有限,从而遏制了其更广泛的发展。另一方面,许多关于球蛋白基因调节的研究,导致基于核酸酶介导的HBG抑制剂元素的靶向靶向胎儿γ-蛋白基因(HBG)的重新激活的几种基因组编辑策略。尽管这些策略的效率似乎在临床前和临床研究中得到了证实,但对这些修改的长期后果知之甚少。此外,必须考虑基于核酸酶的策略的潜在遗传毒性,尤其是在与高靶向速率相关时。最近引入无核酸酶基因组编辑技术带来了SCD基因校正策略的潜力,SCD基因校正也可能具有与HBG相比 - 重新激活的策略。在这篇综述中,我们讨论了基因组编辑策略的最新进展,以纠正引起SCD的突变,以试图概括当前可用的有前途的策略及其相对优势和劣势。
引言威尔逊疾病(WD)是由ATP7B基因中的致病变异引起的一种罕见的常染色体隐性代谢疾病,它编码了P型铜转运ATPase,并且主要在HEPATOCYTES中表达。ATP7B在铜代谢中起着至关重要的作用,为铜蛋白合成提供了铜,并将过量的铜释放到胆汁中。ATP7B功能的丧失会导致肝脏中的有毒铜沉积物,并且在较小程度上,在大脑,眼睛和肾脏中导致慢性肝炎和肝硬化,直到肝脏衰竭,并导致精神病和神经系统缺陷。当前的WD疗法基于螯合剂的去除和减少锌盐铜肠吸收的铜沉积物(1)。治疗在所有WD患者中均不有效,无反应者通常需要肝移植(2)。此外,遵守治疗通常是一个问题,尤其是在青少年中(3,4)。腺相关病毒(AAV)载体被认为是肝脏定向基因治疗的首选载体,并且正在迅速进入诊所(5)。使用AAV载体的经典基因替代方法已在成年ATP7B - / - 小鼠(6)中实现了疾病校正。然而,WD可以在年轻人中表现出来,而在生长肝脏中早期施用了伴有肝AAV载体可能会导致由于肝细胞增殖而导致转基因表达的逐渐丧失。此外,大多数WD患者在诊断时已经存在肝损伤(7),再生反应可能会进一步促进转基因稀释。此策略利用相反,基因组编辑会导致永久性基因组DNA修饰,如果发生增殖,则由子细胞遗传,从而避免转基因稀释。AAV介导的无启动子转基因在白蛋白(ALB)基因座中的靶向整合已被开发为一种安全有效的肝脏定向基因组编辑方法(8)。
简介 威尔逊病 (WD) 是一种罕见的常染色体隐性铜代谢障碍,由 ATP7B 基因的致病变异引起,该基因编码 P 型铜转运 ATPase,主要在肝细胞中表达。ATP7B 在铜代谢中起着关键作用,为铜蛋白合成提供铜,并将过量的铜释放到胆汁中。ATP7B 功能丧失会导致肝脏中出现有毒的铜沉积,在较小程度上还会在脑、眼和肾脏中出现,从而导致慢性肝炎和肝硬化直至肝功能衰竭,以及精神和神经功能障碍。目前对 WD 的治疗方法是通过螯合剂去除铜沉积物和通过锌盐减少肠道对铜的吸收 (1)。这种疗法并非对所有 WD 患者都有效,对治疗无反应的患者通常需要肝移植 (2)。此外,治疗依从性往往是一个问题,尤其是在青少年中 (3, 4)。腺相关病毒 (AAV) 载体被认为是肝脏定向基因治疗的首选载体,并正在迅速进入临床 (5)。使用 AAV 载体的经典基因置换方法已在成年 Atp7b –/– 小鼠中实现了疾病纠正 (6)。然而,WD 可能在年轻个体中表现出来,在生长的肝脏中早期施用游离型 AAV 载体可能会导致由于肝细胞增殖而逐渐丧失转基因表达。此外,大多数 WD 患者在诊断时已经出现肝损伤 (7),再生反应可能会进一步促进转基因稀释。相反,基因组编辑会导致永久性的基因组 DNA 修饰,如果发生增殖,子细胞会继承这些修饰,从而避免转基因稀释。AAV 介导的白蛋白 (Alb) 基因座内无启动子转基因的靶向整合已被开发为一种安全有效的肝脏定向基因组编辑方法 (8)。该策略利用
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年10月12日发布。 https://doi.org/10.1101/2023.08.21.554147 doi:Biorxiv Preprint
摘要 量子态转移是量子信息处理的关键操作。原始的投接协议依靠具有设计波包形状的飞行量子比特或单光子来实现确定性、快速和高保真度的传输。然而,这些协议忽略了两个重要因素,即传播过程中波包的扭曲以及由于时间相关控制导致的发射和再吸收过程中的非马尔可夫效应。在这里,我们解决了一般量子光学模型中的这两个难题,并提出了一种改进量子态转移协议的校正策略。在我们的理论描述中包括非马尔可夫效应,我们展示了如何导出控制脉冲,这些控制脉冲在波包上印上相位以补偿传播引起的失真。我们的理论结果得到了详细数值模拟的支持,表明合适的校正策略可以将状态转移保真度提高三个数量级。
自由唾液酸储存障碍(FSASD)是由SLC17A5基因的病原体变异引起的,该基因编码了lyso- somal跨膜蛋白sialin。sialin的损失或缺乏效率会损害FSA从溶酶体中传输,导致细胞功能障碍和神经系统障碍,最严重的FSASD形式导致童年时期死亡。目前尚无FSASD的疗法。在这里,我们评估了针对创始人变体的CRISPR-CAS9介导的定向修复(HDR)和腺嘌呤基础编辑(ABE)SLC17A5 C.115C> t(P.Arg39cys)在人类皮肤上的效果。We observed min- imal correction of the pathogenic variant in HDR samples with a high frequency of undesired insertions/deletions (indels) and signi fi cant levels of correction for ABE-treated samples with no detectable indels, supporting previous work showing that CRISPR-Cas9-mediated ABE outperforms HDR.此外,ABE治疗纯合或复合杂合子SLC17A5 c.115c> t人类皮肤纤维细胞降低了FSA的显着减少,以支持疾病病理学的改善。将这种安倍策略转换为携带slc17a5 c.115c> t变体的小鼠胚胎纤维细胞概括了这些结果。我们的研究将基础编辑作为FSASD变体SLC17A5 c.115c> t的治疗方法的可行性,并突出了基础编辑在单基因疾病中的实用性,而单基膜蛋白功能受损。
考虑到大型材料空间,热电材料的探索挑战,再加上掺杂和合成途径的多样性所带来的自由度的增加。在这里,已合并历史数据,并通过使用错误纠正学习(ECL)进行实验反馈进行更新。这是通过从先验数据集中学习而实现的,然后将模型调整为合成和表征的差异,这些差异很难参数化。This strategy is thus applied to discovering thermoelectric materials, where synthesis is prioritized at temperatures < 300 ○ C. A previously unexplored chemical family of thermoelectric materials, PbSe:SnSb, is documented, finding that the best candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power factor more than 2 × that of PbSe.本文的研究表明,与由最先进的机器学习(ML)模型提供动力的高通量搜索相比,闭环实验策略减少了所需的实验数量,以将优化材料数量高达3×。还可以观察到,这种改进取决于ML模型的准确性,以表现出减少回报的方式:一旦达到了一定的精度,与实验途径相关的因素开始主导趋势。
考虑到大型材料空间,热电材料的探索挑战,再加上掺杂和合成途径的多样性所带来的自由度的增加。在这里,已合并历史数据,并通过使用错误纠正学习(ECL)进行实验反馈进行更新。这是通过从先验数据集中学习而实现的,然后将模型调整为合成和表征的差异,这些差异很难参数化。This strategy is thus applied to discovering thermoelectric materials, where synthesis is prioritized at temperatures < 300 ○ C. A previously unexplored chemical family of thermoelectric materials, PbSe:SnSb, is documented, finding that the best candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power factor more than 2 × that of PbSe.本文的研究表明,与由最先进的机器学习(ML)模型提供动力的高通量搜索相比,闭环实验策略减少了所需的实验数量,以将优化材料数量高达3×。还可以观察到,这种改进取决于ML模型的准确性,以表现出减少回报的方式:一旦达到了一定的精度,与实验途径相关的因素开始主导趋势。