摘要 — 量子隐形传态是量子互联网的关键通信功能,它允许“传输”量子位,而无需物理转移存储量子位的粒子。量子隐形传态是由量子纠缠作用实现的,量子纠缠是一种有点违反直觉的物理现象,在经典世界中没有直接对应物。因此,必须重新设计经典通信系统模型的概念,以解释量子隐形传态的特殊性。这种重新设计是构建任何有效量子通信协议的关键先决条件。本文旨在阐明这一关键概念,目的是让读者:i)认识到经典信息传输与量子信息隐形传态之间的根本区别;ii)理解量子隐形传态背后的通信功能,并掌握这些功能的设计和实际应用中的挑战;iii)承认量子信息会受到一种称为量子退相干的噪声过程的有害影响。这种不完美在经典世界中没有直接的对应物;iv)认识到如何为量子互联网的设计和使用做出贡献。索引术语 — 量子通信、量子互联网、量子噪声、量子隐形传态、纠缠。
摘要 — 在远距离节点之间分配纠缠是量子网络中的一项基本任务。 为了完成这项任务,引入了量子中继器来执行纠缠交换。 本文提出了一种远程纠缠分布 (RED) 协议的设计,以最大化纠缠分布率 (EDR)。 我们引入了节点的概念,表示网络中纠缠的量子比特 (qubit) 对。 这一概念使我们能够基于一些线性规划问题的解来设计最优 RED 协议。 此外,我们研究了同质中继链中的 RED,它是许多量子网络的基石。 具体而言,我们以封闭形式确定了同质中继链的最大 EDR。 我们的研究结果使得能够使用有噪声的中尺度量子 (NISQ) 技术分配长距离纠缠,并为一般量子网络的设计和实施提供了见解。
在本文中,我们广泛研究了将纠缠广播为状态相关与状态独立克隆器的问题。我们首先重新概念化状态相关量子克隆机 (SD-QCM) 的概念,在此过程中,我们引入了不同类型的 SD-QCM,即正交和非正交克隆器。我们推导出这些克隆器的保真度将变得独立于输入状态的条件。我们注意到,这种构造允许我们以拥有输入状态的部分信息为代价来最大化克隆保真度。在关于纠缠广播的讨论中,我们以一般的两量子比特状态作为资源开始,然后我们考虑贝尔对角态的一个具体例子。我们在输入资源状态上局部和非局部地应用状态相关和状态独立克隆器(正交和非正交),并根据输入状态参数获得纠缠广播的范围。我们的研究结果突出了状态依赖型克隆器在广播纠缠方面优于状态独立型克隆器的几个例子。我们的研究提供了一个比较视角,即在两个量子比特场景中通过克隆广播纠缠,即当我们对资源集合有所了解时,以及当我们没有此类信息时。
压缩态和纠缠态已被证明是光量子传感和提高测量灵敏度的宝贵资源。然而,它们的潜力尚未得到充分挖掘。在我的论文的第一部分,我展示了压缩光操作的马赫曾德干涉仪的实验量子增强。我测量了超过十倍的非经典灵敏度改进,相当于 (10.5 ± 0.1) dB,这相当于相干光功率增加了 11.2 倍。此外,我的论文提出了一个关于马赫曾德拓扑内直接吸收(损耗)测量的新概念。该技术使用量子相关的二分压缩光束来测量放置在马赫曾德干涉仪一个臂中的样品的透射率。我的原理验证实验表明,损耗与所用光电二极管的量子效率无关。除此之外,该概念可能成为集成量子光子器件生物传感光学测量的有力工具。感光样品在强光照射下特别容易受到高功率的影响,而这种测量将受益于压缩光的极低强度。在我的论文的第二部分,我展示了如何克服传感动态系统中的量子不确定性。首次实现了相对于纠缠量子参考具有亚海森堡不确定性的相空间轨迹。时间演化得到无条件监测,其精度比任何没有关联的量子力学系统高十倍。我同时测量了相位和振幅正交,剩余不确定性为 ∆ X ( t ) ∆ Y ( t ) ≈ 0.1 Å h / 2 。结果支持纠缠增强传感器的量子技术,并证实了量子不确定性关系的增强物理描述。从这个角度来看,我重新审视了海森堡的不确定性关系,并得出结论,它为两个共轭可观测量相对于已耦合到环境的参考系统的不确定性设置了下限。
通过传播光子耦合孤立量子系统是量子科学的中心主题 1、2,具有实现分布式容错量子计算 3 – 5 等突破性应用的潜力。到目前为止,光子已被广泛用于实现高保真远程纠缠 6 – 12 和状态转移 13 – 15,方法是用条件反射补偿效率低下,这是一种限制通信速率的概率性策略。与此相反,我们在这里通过实验实现了一个长期存在的确定性直接量子态转移的提议 16。利用高效的、参数控制的微波光子发射和吸收,我们展示了两个孤立超导腔量子存储器之间按需的高保真状态转移和纠缠。传输速率比任一存储器中光子的丢失速率更快,这是复杂网络的基本要求。通过以多光子编码传输状态,我们进一步表明,使用腔体存储器和状态独立传输创造了惊人的机会,可以通过量子误差校正确定性地减轻传输损耗。我们的研究结果为跨网络的确定性量子通信建立了一种引人注目的方法,并将实现超导量子电路的模块化扩展。直接量子态转移是一种快速、确定性的量子通信方案,用于在量子网络中传播光子 16 。在该协议中,发送节点以成形的光子波包形式发射量子态,然后被接收节点吸收。这需要光和物质之间强大的可调耦合,以及在共享通信频率上高效传输光子;到目前为止,由于光子耦合和传输效率低下,光网络中的状态转移具有高度概率性 8 。相比之下,超导微波电路可以将低损耗与强耦合相结合。该平台非常适合实现按需状态转移,从而以模块化方式扩展量子设备。为此,超导微波存储器和传播模式已成功对接,独立实现受控光子发射 17 – 20 和吸收 21 – 23。然而,由于高效、频率匹配的光子传输需求带来的困难,远距离确定性量子通信的目标至今仍未实现。
大学,甘托克,锡金 电子邮件:love.mittal@mangalayatan.edu.in 摘要:量子计算由量子比特(qubits)的非凡特性——叠加和纠缠推动,正处于技术革命的风口浪尖。叠加允许量子比特同时存在于多种状态,从而加速密码学、药物发现、优化、材料科学和人工智能中的问题解决。像 Shor 和 Grover 这样的量子算法有望颠覆传统加密并改变数据分析。纠缠是一种神秘的量子连接,它增强了量子通信和纠错,同时提供了安全的量子隐形传态。然而,量子计算面临着量子比特稳定性、扩展、纠错和量子软件开发等关键挑战。随着量子技术的进步,它有望重塑行业和社会,应对气候建模、能源、金融和物流等领域的挑战。前进的道路需要合作、道德考虑和对负责任发展的承诺。在这个量子时代,未来是量子的,充满创新、安全和变革性的计算能力。关键词:量子计算、量子比特、叠加、纠缠、量子算法 1. 简介:
基于卫星的量子通信通道对于超长距离很重要。鉴于卫星通行证的持续时间很短,在卫星通过该区域时,有效地连接全市网络的多个用户可能会很具有挑战性。我们提出了一个具有双功能性的网络:在短暂的卫星通行证中,地面网络被视为多点到点拓扑,所有地面节点都与卫星接收器建立纠缠。在不可用的卫星时,通过单个光学开关将卫星上链路连续到接地节点,并将网络作为配对地面网络配置。我们在数值上模拟了脉冲超键入光子源,并研究提出的网络配置的量子键分布的性能。在卫星接收器利用时间复杂的情况下,我们发现了有利的缩放,而地面节点则利用频率多路复用。可伸缩性,简单的可重新选择性和与纤维网络的易于集成使该体系结构成为许多地面节点和卫星量子通信的有前途的候选人,从而为在全球范围内的地面节点互连铺平了道路。
我们研究了d¼4minkowski时空中自由费米子场理论的纠缠熵的通用对数系数。作为热身,我们通过对D¼2半线的尺寸减小以及随后在晶格上进行数值实时计算来重新审视无质量自旋1 = 2场情况。出乎意料的是,该面积系数差异以径向离散化,但对于由相互信息引起的几何正则化是有限的。所得的通用对数系数 - 11 = 90与文献一致。对于自由质量自旋 - 3 = 2场,Rarita-Schwinger场,我们还对半行进行了尺寸降低。除了省略最低的总角动量模式外,降低的哈密顿量与自旋1 = 2一致。这给出了一个通用对数系数-71 = 90。我们讨论了无应力能量张量的自由高自旋场理论的通用对数系数的物理解释。
纠缠 - 根据任何当地现实的模型,即局部隐藏变量,都超过了可能的非局部相关性,这是量子力学的非常强调,并且是许多新的量子信息革命的基础。在1960年代,约翰·贝尔(John Bell)开发了一项测试,通过指定两个模型中具有不同最大界限的数量,将这种隐藏可变性理论与量子机械理论区分开。自从他们出现以来,贝尔测试一直是物理学基础研究的重点,提供了一种方法来证明量子力学中存在的非局部效应[2],验证纠缠[3]的存在,甚至探索了超固量理论的限制,从而可以预测与标准量子机械的允许的强度相关的强度相关性[4]。其他技术,例如量子转向[5-8],将纠缠验证的适用性扩展到具有不同假设的更广泛的方案。最初,这些非局部性测试被认为是“思想实验”,揭示了量子力学的意外(或某些不合逻辑)特征。但是,重复的实验性验证是纠缠状态的标志的相关性,毫无疑问,“远距离的怪异动作”是现实的一部分。这些测量技术的重新确定已经达到了使用铃铛不平等的非局部性“无漏洞”测试的三个测试,从而提供了令人信服的证据,表明自然是真正的非本地遗体[9-11]。同时,