I. 简介 深空通信系统在非常远的距离内运行,而机载能量发生器的容量非常有限,导致接收端的信噪比 (SNR) 非常低。这就是使用接近香农极限的纠错码的原因。然而,为了利用这种增益,必须进行相干解调,并且必须在更严格的 SNR(对于 Turbo 码 1/6,𝐸 𝑠 /𝑁 0 ≃ – 8 dB)下提供载波相位同步。分配给深空任务的频谱资源是有限的(X 波段 8 GHz),为了优化频谱效率,空间数据系统咨询委员会(CCSDS)建议 [1] 对于 B 类任务(深空任务)使用预编码 GMSK 调制(高斯最小频移键控),高斯滤波器带宽位周期积𝐵𝑇 𝑏 = 0.5,对于 A 类任务(低空任务)使用 GMSK 𝐵𝑇 𝑏 = 0.25。本文讨论了一种由最大后验(MAP)准则和洛朗展开式 [3] 衍生的用于 GMSK 调制的盲相位检测器 [2]。为了评估该相位检测器在非常低的 SNR 下在闭环结构中的性能,我们考虑了 [4] 和 [5] 中描述的另外两个简化版本。我们对线性和非线性域中的这三种不同结构进行了全面研究。我们还介绍了使用低速率纠错码(Turbo 1/6)进行计算机模拟所获得的结果。这项工作的目的是比较这三个相位检测器的性能,并评估为获得两个简化版本而进行的简化的影响。
多体量子系统在理论和实验量子信息处理中无处不在,从凝聚态系统的模拟到良好量子纠错码的开发。近年来,我们对这些系统复杂性的数学理解取得了重大进展。在这些讲座中,我们将探讨多体量子系统的物理模型的复杂性,从物质的基态和热态到短时量子演化的输出。我们将考虑两种复杂性概念:(i) 模拟系统属性的计算难度(又名正向问题);(ii) 从访问样本(又名逆问题)中学习系统的经典描述的可学习性。
对于通用量子计算,实际实施需要克服的一个主要挑战是容错量子信息处理所需的大量资源。一个重要方面是实现由量子纠错码中的逻辑门构建的任意幺正算子。通过组装从一小组通用门中选择的逻辑门序列,可以使用合成算法将任何幺正门近似到任意精度,这些通用门在量子纠错码中编码时可容错执行。然而,目前的程序还不支持单独分配基本门成本,许多程序不支持扩展的通用基本门集。我们使用基于 Dijkstra 寻路算法的穷举搜索分析了标准 Clifferd+T 基本门集的成本最优序列,并将其与另外包括 Clifferd 层次结构更高阶的 Z 旋转时的结果进行了比较。使用了两种分配基本门成本的方法。首先,通过递归应用 Z 旋转催化电路将成本降低到 T 计数。其次,将成本指定为直接提炼和实现容错门所需的原始(即物理级)魔法状态的平均数量。我们发现,使用 Z 旋转催化电路方法时,平均序列成本最多可降低 54 ± 3%,使用魔法状态提炼方法时,平均序列成本最多可降低 33 ± 2%。此外,我们通过开发一个分析模型来估计在近似随机目标门的序列中发现的来自 Clifford 层次结构高阶的 Z 旋转门组的比例,从而研究了某些基本门成本分配的观察局限性。
这项工作。我们的论文取自 ETSI 量子安全密码学小组目前正在开发的一份更大的文件,该文件讨论了量子计算机对对称密码学的影响。旨在利用现有文献中关于高效量子电路和经过充分研究的量子纠错码的结果来估计 Grover 在合理的时间内破解标准化分组密码和哈希函数所需的物理资源。它还补充了之前的 ETSI QSC 报告 [1],该报告对算法实现、量子纠错和量子硬件性能做出了非常保守的假设,得出结论,256 位分组密码和哈希函数将保持对 Grover 的安全性。
• 安全性和保密性 – 加密服务引擎 (CSEc) 实现了 SHE(安全硬件扩展)功能规范中所述的一套全面的加密功能。注意:CSEc(安全)或 EEPROM 写入/擦除将在 HSRUN 模式(112 MHz)下触发错误标志,因为此用例不允许同时执行。设备需要切换到 RUN 模式(80 MHz)才能执行 CSEc(安全)或 EEPROM 写入/擦除。 – 128 位唯一标识 (ID) 号 – 闪存和 SRAM 存储器上的纠错码 (ECC) – 系统内存保护单元(系统 MPU) – 循环冗余校验 (CRC) 模块 – 内部看门狗 (WDOG) – 外部看门狗监视器 (EWM) 模块
纠错是构建量子计算机的关键步骤。量子系统会因退相干和噪声而产生误差。通过使用量子纠错,可以防止量子计算设备中的量子信息被破坏。人们为开发和研究量子纠错码做出了许多努力和改进。其中,拓扑码(如表面码 [1], [2])因其高阈值和局部性 [3] 而有望用于构建实用的量子计算机。色码 [4] 是另一种有前途的用于容错量子计算的拓扑量子纠错码。它们提供的阈值相对较好,略低于表面码 [5], [6], [7]。然而,与表面码不同,横向 Clifford 运算可以充当逻辑 Clifford 运算 [8]。量子擦除通道 [9], [10] 是简单的噪声模型,其中一些量子位被擦除,并且我们已知哪些量子位被擦除。当一个量子比特被擦除时,该量子比特被认为会受到随机选择的泡利误差的影响。了解哪些量子比特被擦除可能会使开发解码算法变得不那么复杂。最近,有人提出了在量子擦除信道上以线性时间对表面码进行最大似然 (ML) 解码 [11],它被用作表面码和色码的近线性时间解码算法的子程序 [6],通过将它们投影到表面码 [12]、[7] 上来纠正泡利误差和擦除。在本文中,我们证明了当一组被擦除的量子比特满足某个可修剪性条件时,在量子擦除信道上对色码进行线性时间 ML 解码是可能的,并提出了一种解码算法,我们称之为修剪解码。我们还提供了当不遵守可修剪性约束时如何使用修剪解码的方法。
该模拟器使用磁场和激光配置来创建类似事件的视界,为模拟黑洞附近的量子隧穿创造条件。该装置希望在实验室环境中展示霍金辐射。量子场操纵器由超导量子比特和纠缠发生器组成。它创建并维持与 ZPE 场相互作用的纠缠态。超导电路(例如量子计算机中使用的电路,例如 transmon 量子比特)用于维持相干性并促进纠缠。具有纠错和稳定机制的量子计算机处理量子态,从而能够有效地从 ZPE 中提取能量。纠错码(例如表面码)用于保护量子信息免受退相干的影响。