ExcelitasTechnologies®Corp.是一家领先的工业技术制造商,致力于提供创新的,市场驱动的光子解决方案,以满足OEM和最终用户客户的照明,光学,Optronic,Optronic,Sensing,Seensing,Texping,Texption和Image的需求。在生物医学,科学,半导体,工业制造,安全,安全,消费产品,国防和航空航天部门提供大量应用,Excelitas致力于使我们的客户在许多各种最终市场中取得成功。我们的团队由在北美,欧洲和亚洲工作的7,500多名专业人员组成,为全世界的客户提供服务。
摘要:抑制作用受损,这是注意力缺陷多动障碍(ADHD)的核心症状,显着影响个人的整体生活质量。然而,基本机制尚不清楚。,我们在大学生中进行了情感上的GO/Nogo任务,以探索多动症与高度敏感人(HSP)特征之间的潜在相关性。层次的多元回归分析表明,委员会对愤怒面孔做出反应时增加的错误可以通过HSP特征来更好地解释,而不是仅通过ADHD特征来解释。此外,我们建议右前额叶皮层中的活动增强与这些反应抑制困难有关。这项研究的结果与先前研究的结果保持一致,这表明ADHD特征加剧了涉及愤怒面孔的任务中的抑制作用抑制困难。但是,我们强调了与仅ADHD特征相比,HSP特征的重要作用。这强调了考虑或不存在ADHD诊断和ADHD性状的强度以及在支持具有明显ADHD特征的个体时的HSP特征的重要性。
超敏光谱是中红外(MIR)技术的重要组成部分。然而,miR探测器的缺点在单光子水平上对稳健的miR光谱构成了挑战。我们提出了miR单光子频率上转换光谱非局部将miR信息映射到时间do-main。来自自发参数下调的宽带miR光子频率向上转换为具有量子相关性保存的近红外带。通过纤维的组延迟,在1.18微米的带宽为2.76至3.94微米内的miR光谱信息被成功地投影到相关光子对的到达时间。在每秒6.4×10 6光子的条件下,使用单像素检测器证明了具有单光子敏感性的聚合物的传输光谱。开发方法绕过扫描和频率选择不稳定性,它在不断发展的环境中固有的兼容性和各种波长的可伸缩性而引人注目。由于其高灵敏度和鲁棒性,生化样品的表征和量子系统的弱测量值可能是预见的。
分子光谱是分子与电磁辐射相互作用时的电子,振动和旋转激发的分析。它被广泛用作识别和表征材料定量和定性分析的分子的工具。摩尔的光谱是入射电磁辐射的测量吸收或发射。每个分子都为特定的光谱法产生独特的光谱,从而使光谱被用作分子的ngerprint。红外(IR)光谱法是一种光谱技术,它阐明了改变其偶极矩的分子的振动模式。1这些振动模式导致摩尔数在红外线区域吸收电磁辐射,该区域位于波数4000 - 400 cm-1的范围内。官能团在1500 cm - 1以上的峰区域中具有独特的吸光度,称为功能组区域。2
Glasgow, G1 1XL, UK Corresponding authors, e-mail: * arnaoutakis@hmu.gr , # bryce.richards@kit.edu Abstract Upconversion – the absorption of two or more photons resulting in radiative emission at a higher energy than the excitation – has the potential to enhance the efficiency of solar energy harvesting technologies, most notably photovoltaics.但是,所需的超高光强度和灯笼离子的狭窄吸收带限制了有效的太阳能利用率。在本文中,我们报告了令人兴奋的上转换器,其浓度的阳光在通量密度高达2300个太阳下,辐射仅限于硅带隙以下的光子能量(对应于波长= 1200 nm)。上转换到= 980 nm是通过在荧光聚合物基质中使用六角形的Erbium掺杂钠yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium。上转换具有与辐照度的非线性关系,因此在高辐照度下,在过程变为线性的情况下发生阈值。对于β -Nayf 4:25%ER 3+,我们在320个太阳下浓缩的阳光下发现了两个光子阈值。值得注意的是,该阈值低于相应的激光激发,并且可能与所有共同激发的ER 3+离子水平和激发的吸收有关。这些结果突出了一条利用光伏的太阳光谱的途径。简介上转换(UC)是一个非线性光子过程,可以添加来自两个或多个较低能量光子的能量,从而导致单个较高能量光子的发射[1]。第一个激发态通过基态吸收(GSA)填充。uc已在激光器[2],生物医学成像[3],[4],抗爆炸[5],[6],塑料回收[7]和太阳能收获[8],[9],[9],[10]中进行了研究。对于光伏,这可能是绕过太阳能光谱中与子频带光子相关的太阳能电池传输损失的一种有前途的方法[11]。计算表明,在理想情况下,UC可以提高单连接太阳能电池的理论上效率(Shockley-Queisser)极限从33%到48%[11]。有效的稀有地球[12],[13],[14]上转换器的外部转换器高达9.5%,外部UC量子产量(EUCQY),这是外部发射与入射光子的比率。稀有的稀土上转换器具有较高的近红外(NIR)Eucqy的表现最高的硅[14],[15]和钙钛矿太阳能电池[16]。在三价灯笼离子中,UC通过部分填充的4F壳中的辐射过渡发生。额外光子的激发态吸收(ESA)可以产生更高的激发态。然而,可以通过第一个激发态以第一个激发态的能量传递向上转换(ETU)来进行更有效的过程,尤其是在较低的激发能力密度下,如图1(a)。一个离子的能量被捐赠给附近的离子,将其推广到更高的亚稳态状态,而敏化剂的能量又回到基态。
©2022 Taylor&Francis Group,LLC。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线在http://doi.org/10.1080/05704928.2022.2156527获得。
摘要:功能性近红外光谱(FNIRS)是一种创新的神经影像学方法,比其他常用方式具有多种优势。这项叙述性综述研究了这种方法对神经退行性疾病研究的潜在贡献。涉及患有阿尔茨海默氏病(AD)的患者,轻度认知障碍(MCI),前颞痴呆症(FTD),帕金森氏病(PD)或肌营养性侧面硬化症(ALS)和健康对照组的研究。总的来说,有MCI个体的前额叶皮层可能会涉及补偿机制以支持大脑功能下降。建议向右转移,以弥补认知能力下降过程中左前额叶能力的损失。同时,一些研究报告了MCI和早期AD中补偿机制的失败。缺乏适当的血液动力学反应可能是神经刺激的早期生物标志物。一份评估FTD的文章与AD相比显示出异质的皮质激活模式,表明FNIRS可能有助于这些条件的挑战性区别。关于PD,有证据表明认知资源(尤其是执行功能)被招募以弥补运动障碍。至于ALS,即使在没有可测量的认知障碍的情况下,FNIRS数据也支持在ALS中的运动外网络的参与。
摘要。窄带光进行是用于材料分析和传感的重要测量技术,例如非分散红外传感技术。已经探索了光活性材料工程和纳米光子过滤方案,以实现波长选择的光电检测,而大多数设备的响应性带宽大于操作波长的2%,从而限制了感知性能。在Au/Si Schottky纳米结中,通过实验证明了带宽小于0.2%的近红外照相检测。通过仔细尾随纳米结构中的吸收性和辐射损失,在1550 nm的波长下获得了光电响应的最小线宽。使用波纹的AU膜在芯片上实现了多个功能,包括窄带共振,用于传感和光电检测的光收集以及用于热电子发射的电极。受益于与原位光电传感信号和超核会共振的原位光电转换,通过简单的强度询问进行了独立的芯片生物传感,在Glucose解决方案的浓度下降至0.0047%,用于Glucose解决方案和150 ng ng ml for Rabbit Bitbit Igg。在现场传感,光谱,光谱成像等中应用的这种技术的有希望的潜力。
尚未内置在硅IC中的一种光学组件是一种引人注目的高性能硅激光器。已经有几次尝试从硅中制造激光的尝试,但是尚未证明没有技术在商业上可行。唯一的解决方案是使用INP EEL。