摘要:短波红外胶体量子点 (SWIR-CQD) 是能够跨 AM1.5G 太阳光谱进行收集的半导体。当今的 SWIR-CQD 太阳能电池依赖于旋涂;然而,这些薄膜的厚度一旦超过 ∼ 500 nm,就会出现开裂。我们假定刮刀涂覆策略可以实现厚 QD 薄膜。我们开发了一种配体交换,并增加了一个分解步骤,从而能够分散 SWIR-CQD。然后,我们设计了一种四元墨水,将高粘度溶剂与短 QD 稳定配体结合在一起。这种墨水在温和的加热床上用刮刀涂覆,形成了微米厚的 SWIR-CQD 薄膜。这些 SWIR-CQD 太阳能电池的短路电流密度 (Jsc) 达到 39 mA cm − 2,相当于收集了 AM1.5G 照明下入射光子总数的 60%。外部量子效率测量表明,第一个激子峰和最接近的法布里-珀罗共振峰均达到约 80% 这是在溶液处理半导体中报道的 1400 nm 以上最高的无偏 EQE。关键词:红外光伏、量子点、配体交换、刀片涂层■ 介绍
阿尔茨海默氏病(AD)中脑肠肠相连接的证据为治疗不存在确定性治疗的病理的治疗提供了新的途径。肠道菌群和细菌易位可能会产生周围炎症和免疫调节,从而导致AD中脑淀粉样变性,神经变性和认知缺陷。肠道微生物群可以用作AD中的潜在特性靶标。尤其是,光生态调节(PBM)会影响微生物群和免疫系统之间的相互作用,从而为其在与AD相关的营养不良中的恢复性质提供了潜在的解释。PBM是一种安全的,无创的,非离子化和非热治疗,它使用红色或近红外光刺激细胞色素C氧化酶(CCO,复合物IV),即线粒体电子转运链的末端酶,从而导致腺苷三磷酸腺苷磷酸腺苷磷酸酯合成。通过同时应用腹部将PBM直接应用于头部与脱离和全身治疗的关联,通过靶向这种高度复杂的病理的各种成分,为AD提供了创新的AD方法。作为假设,PBM在可用于治疗AD的治疗方案中可能具有重要作用。
化学响应阀是基于通道的微流体学的必不可少的设备。1-3这样的系统选择性地操纵/控制了由外部输入触发的一小部分液体内部的液体或隔室。通常,微流体阀是通过使用刺激反应性聚合物作为活性材料设计的。1,2不同的基于聚合物的阀,由电气4,5或磁场控制,6个红外光,7,8温度,9和pH 10。尽管如此,替代性响应式设备的设计,对不同和更复杂的物理化学参数(例如手性)敏感,这是一个有趣的挑战。手性是元素颗粒,分子甚至宏观物体的基本对称特性。11通常将系统定义为手性,如果它作为一对无法叠加的“左手”和“右手”的镜像图像(对映异构体)。由于它们在医学,化学或生物化学中的众多应用,手性分子引起了人们的关注。11,例如,对于生物系统,可以为定义的生物受体设计特定的药物化合物,其中手性用于调整相互作用的性质。12因此,对映体相互作用最终会控制和扰动生物学功能,因此,在生物系统中,对映认知至关重要。尽管已经开发出不同的光谱法来有效地鉴定手性探针,但13-
据说21世纪是大脑的世纪,神经科学是一项高级研究的研究,从基础研究到医疗和生物领域的临床应用到甚至工业应用,在广泛领域的研究中取得了显着进步。大脑与“思想”的关系有很多方面,例如我们如何思考,记忆,识别和感受情绪,仍然不太了解。研究这种脑科学确实是世界各地的生活科学研究的前沿,正在对涉及多个领域的综合领域的各种研究项目进行工作。大脑功能研究不仅限于传统研究领域,例如精神病学,神经病学,人类发展和心理学。现在,各种康复或应用工程领域以及社会和人类科学以及经济学以及经济学也越来越兴趣。这一研究范围正在以越来越多的速度扩展。此外,已经开发了各种测量技术和工具作为研究大脑功能的方法。一些方法包括EEG(脑电图),fMRI(功能性磁共振成像),PET(正电子发射断层扫描)和MEG(磁脑摄影)(请参见表1)。近年来已经开发并一直在提高期望的一种新方法是FNIRS(功能性近红外光谱法)。此方法能够使用红外光无创地测量大脑功能,从而提供了人体的出色渗透。fnirs比其他测量方法具有多个优点,例如对该主题的限制更少。因此,作为允许高度自由的测量方法,该技术的应用正在快速增加。FNIRS的主要收益之一是它与其他测量方法的高兼容性,这意味着它可以同时进行测量。
声子极化子能够实现红外光的波导和定位,具有极强的限制性和低损耗。通常使用互补技术(例如近场光学显微镜和远场反射光谱)来探测此类极化子的空间传播和光谱共振。这里,介绍了红外-可见和频光谱显微镜作为声子极化子光谱成像的工具。该技术同时提供亚波长空间分辨率和高分辨率光谱共振信息。这是通过使用可调红外激光共振激发极化子和对上转换光进行宽场显微镜检测来实现的。该技术用于对 SiC 微柱超表面中局部和传播表面声子极化子的杂交和强耦合进行成像。光谱显微镜允许通过角度相关共振成像同时测量动量空间中的极化子色散,并通过极化子干涉测量法在实空间中测量极化子色散。值得注意的是,可以直接成像强耦合如何影响极化子的空间定位,而这是传统光谱技术无法实现的。在强耦合阻止极化子传播到超表面的激发频率下观察到边缘态的形成。该技术适用于具有破坏反演对称性的广泛极化子材料,可用作快速、非微扰工具来成像极化子杂化和传播。
功能性近红外光谱 (fNIRS) 是一种非侵入性光学成像技术,它利用近红外光测量大脑皮层氧合情况。近年来,fNIRS 的使用呈指数级增长。空间记忆被定义为学习和使用空间信息的能力。这一神经心理过程在我们的日常生活中不断使用,可以通过 fNIRS 进行测量,但尚未有研究评估该技术是否可用于空间记忆的神经心理学评估。本研究旨在回顾使用 fNIRS 对人类空间记忆进行神经心理学评估的实证研究。我们使用了四个数据库:PubMed、PsycINFO、Scopus 和 Web of Science,共发现 18 篇文章符合条件。大多数文章评估了空间或视觉空间工作记忆,主要在基于计算机的任务中进行,使用 16 通道的 fNIRS 设备,主要测量前额叶皮质 (PFC)。分析研究发现,工作记忆负荷与 PFC 活动之间存在线性或二次关系,与健康成年人相比,健康老年人的 PFC 活动活跃度更高,行为结果更差,临床样本中 PFC 过度活跃是一种补偿形式。我们得出结论,fNIRS 与空间记忆的标准神经心理学评估兼容,因此可以用皮质功能活动数据补充行为结果。
关于材料进展摘要:当今的光学神经调节和成像方法能够对神经活动进行因果操纵,以剖析某些行为背后的复杂电路连接并促进脑机接口。在这些方法中,通常使用可见光,因此限制了体内的穿透深度,并且需要进行侵入性手术,这会损害内源性脑组织并限制受试者的自由行为。在本次演讲中,我将介绍三种最近开发的基于新材料进展的应对这些挑战的方法:声光遗传学、红外光遗传学和血管内光源。在声光遗传学中,我们证明机械发光材料可以将聚焦超声转换为局部光发射,用于活体小鼠的非侵入性光遗传神经调节。此外,受响尾蛇红外敏感性的启发,我们开发了一种方法,使用穿透大脑的红外光在自由行为的小鼠的整个大脑中进行无束缚和无植入的神经调节。最后,我们利用受生物矿物启发的方法来合成纳米级荧光粉作为血管内光源。与传统的外部光源相比,这种血管内光源具有更深的组织穿透能力,可以通过未清理的头骨对小鼠大脑进行成像。最后,我将介绍材料科学的进步如何促进我们对思维的理解。
摘要:当突然的创伤对大脑造成损害时,发生创伤性脑损伤(TBI)。TBI可能会导致。创伤性脑损伤(TBI)后的继发损伤会导致脑充氧和自动调节的损害。考虑到次要脑损伤通常发生在创伤后的第一个小时内,因此无创监测可能有助于提供有关大脑病情的早期信息。近红外光谱法(NIRS)是一种基于红外光的发色团吸收的新出现的非侵入性监测方式,具有监测大脑灌注的能力。本综述调查了NIR在TBI监测中的主要应用,并对这些有关氧合和自动调节监测的应用进行了详尽的修订。数据库,例如PubMed,Embase,Web of Science,Scopus和Cochrane库,用于确定1977年至2020年之间的72个出版物,这些出版物与本综述直接相关。发现的大多数证据都使用NIR用于诊断应用,尤其是在氧合和自动调节监测中(59%)。几乎所有患者都是男性成年人,患有严重创伤的男性,主要是通过持续的波浪NIR或空间分辨的光谱NIR和侵入性监测装置进行监测的。一般而言,尽管NIR有各种方法论和技术局限性,但很大一部分评估的论文可能是评估TBI的潜在无创技术。
患有严重肢体障碍,如完全闭锁状态的肌萎缩侧索硬化症 (ALS) (CLIS) 的人无法向他人表达自己的想法。为了解决这个问题,已经开发了许多脑机接口 (BCI) 系统,但它们并未被证明足以满足 CLIS 的要求。在本文中,我们提出了一种词语交流系统:带有护理人员辅助的 BCI,其中护理人员可以积极帮助患者表达单词。我们在此报告,四名几乎 CLIS 中的 ALS 患者和一名 CLIS 中的 ALS 患者成功地用自己的单词(日语)回答无法“是/否”回答的 wh 问题。每个受试者使用基于近红外光的“是/否”交流辅助工具,按顺序选择他或她想要表达的单词中包含的元音(最多三个)。然后,护理人员将所选元音输入到包含元音条目的词典中,词典会返回包含这些元音的候选单词。如果没有合适的单词,护理人员会更改一个元音并重新搜索或从头开始。当选择了合适的单词时,受试者通过“是/否”回答进行确认。三名受试者对所选单词至少有八次中有六次表示“是”(统计测量的可靠性为 91.0%),一名受试者(在 CLIS 中)八次中有五次表示“是”(74.6%),一名受试者四次中有三次表示“是”(81.3%)。因此,我们朝着为此类患者建立实用的词语交流系统迈出了第一步。
摘要:在病原体检测,环境的保护,食品安全以及疾病的诊断和治疗中,碳纳米管(CNT)的使用(CNTS)作为有效的药物递送系统,与许多分子的改善和进步有关的许多分子在组织和组织中的药理学特征的改善和进步与组织和进步有关。,由于开发了医学领域的新工具和设备,因此为科学的发展做出了贡献。CNT具有多功能的机械,物理和化学性能,除了它们与其他材料相关的巨大潜力以促进不同医学领域的应用。AS,例如,由于机械电阻,柔韧性,弹性,弹性和低密度以及由于许多其他可能的应用,以及作为生物标记物,因此在组织工程中将红外光转换为热量,在组织工程中,并且具有电子元件和光学特性,因此具有信号的传输。本评论旨在描述在医学领域应用CNT的现状和观点和挑战。使用描述符“碳纳米管”,“组织再生”,“电气接口(生物传感器和化学传感器)”,“ Photosensitizers”,“ Photosensitizers”,“ Photoshermal”,“ Photothermal”,“ Protother”,“生物工具”,“生物工具”,“ Nanot opompompompompome”,“和Nonanot”,“”和“ nNanot”,“”和“ nonanot”,“”和“ nonanot”,“”和“ nonanot”,“”,“”和“ nonanot”,“”和“ nonanot”,“”和“ nonanot”和“ nonanot”,“”适当分组。所审查的文献显示出非常适用的适用性,但是关于CNT的生物相容性需要更多的研究。获得的数据指向了对这些纳米结构与生物系统的应用和相互作用的标准化研究的需求。