消费级神经技术产品已经问世几十年了。这些产品中的大多数都基于脑电图 (EEG),而脑电图 (EEG) 是一项对噪声敏感的技术。另一种选择是功能性近红外光谱 (fNIRS),这是一种不断发展的神经成像技术,能够实时测量大脑的血流动力学活动。FNIRS 已成功通过功能性磁共振成像 (fMRI) 验证。最近,瑞典公司 Mendi 推出了一款微型无线消费级 fNIRS。本研究旨在比较 Mendi fNIRS 与成熟的实验室 fNIRS 设备对大脑活动的测量结果。19 名参与者(年龄 18-53 岁)进行了两次 Stroop 测试,同时测量了额极(布罗德曼 10 区)的氧合情况。首先,在实验室环境中使用 Biopac 的 fNIRS 设备进行测试,几周后,在家庭环境中使用 Mendi 设备重复该测试。对数据的初步分析显示,两种设备的测量结果具有良好的一致性。在群体层面,相关性为 0.81。这些中期结果需要通过更可靠的分析和后续研究来证实,但 Mendi 设备有望在群体层面提供有效的大脑活动测量,并且该设备很可能用于实验室外的研究。
人类是一种社会性物种,在以目标为导向的合作过程中会进行复杂的互动。1 社会认知是此类互动的基础,包括三个主要组成部分:模拟、共情和心理化。标准的模拟概念是指一种功能过程,在此过程中,观察者试图自发地(甚至借助想象力)重现另一个人的相同心理状态。2 首先,Gallese 3 将社会认知归因于一种能够立即理解的具身模拟,并且与镜像神经元系统相关,即在执行有意动作(如运动动作)和观察相同动作时激活的神经系统。研究表明,6 个月大儿童在观察动作时运动皮层会被激活。4、5 第二个组成部分是共情,即分享感受和情感的能力。6 它是自动的,每个人都不一样,并且根据观察者与被观察者的关系类型而有所不同。 7、8 第三,心理化是社会认知的重要组成部分,是解读他人心理状态(如欲望、信仰和意图)的能力。9-11
摘要。在这篇 Outlook 论文中,我们解释了为什么当通过使用系统生理增强功能性近红外光谱 (SPA-fNIRS) 同时测量系统生理活动(例如心肺和自主神经活动)时,可以促进对功能性近红外光谱 (fNIRS) 神经成像信号的准确生理解释。SPA-fNIRS 的基本原理有两个方面:(i) SPA-fNIRS 能够更完整地解释和理解在头部测量的 fNIRS 信号,因为它们包含源自神经血管耦合和系统生理源的成分。用 SPA-fNIRS 测量的全身生理信号可用于回归 fNIRS 信号中的生理混杂成分。因此可以最大限度地减少误解。(ii) SPA-fNIRS 能够通过将大脑与整个身体的生理状态联系起来来研究具身大脑,从而对它们复杂的相互作用产生新的见解。我们预计 SPA-fNIRS 方法在未来将变得越来越重要。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。全部或部分分发或复制本作品需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.030801]
模型组预测可变最大最大SDR²CV相对RMSECV RMSECV RPDCV模型质量牛奶C4(g/dl)0.01 0.23 0.10 0.10 0.03 0.03 0.93 8%3.67 3牛奶C6(g/dl)0.01 0.01 0.01 0.16 0.16 0.07 0.02 0.02 0.02 0.02 0.91 9%3.32 3牛奶C8牛奶C8牛奶C8牛奶C8(G/DL)0.011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 2011得益3牛奶C10(g/dl)0.02 0.32 0.11 0.04 0.91 9%3.37 3牛奶C12(g/dl)0.02 0.41 0.13 0.13 0.04 0.92 9%3.62 3牛奶C14(g/dl)0.05 1.05 1.20 1.20 1.20 1.20 0.45 0.45 0.13 0.13 0.13 0.15 0%0.0%0.0%0.6牛奶C14_1(dl)0.00 004 dl) 21% 1.78 5 Milk C16 (g/dL) 0.12 3.32 1.20 0.40 0.94 8% 4.18 3 Milk C16_1c (g/dL) 0.01 0.24 0.07 0.03 0.73 20% 1.91 5 Milk C17 (g/dL) 0.00 0.09 0.03 0.01 0.80 13% 2.24 4 Milk C18 (g/dL) 0.05 1.32 0.40 0.15 0.84 14% 2.51 4 Milk C18_1cis9 (g/dL) 0.08 2.69 0.76 0.29 0.95 8% 4.35 2 Milk C18_2c9c12 (g/dL) 0.00 0.17 0.06 0.02 0.72 19% 1.91 5 Milk C18_2c9t11 (g/dL) 0.00 0.14 0.03 0.02 0.74 37% 1.95 6 Milk C18_3c9c12c15 (g/dL) 0.00 0.09 0.02 0.01 0.68 22% 1.77 5 Milk Tot18_1cis (g/dL) 0.09 2.77 0.82 0.31 0.95 8% 4.58 2 Milk Tot18_2 (g/dL) 0.01 0.32 0.10 0.03 0.69 15% 1.79 5 Milk Total_C18_1 (g/dL) 0.10 2.98 0.94 0.33 0.96 7% 5.18 2 Tot18_1trans (g/dL) 0.01 0.57 0.13 0.06 0.79 21% 2.17 4 Milk Total_Trans (g/dL) 0.02 0.75 0.16 0.08 0.80 19% 2.26 4 Milk isoanteiso FA (g/dL) 0.02 0.28 0.09 0.03 0.75 14% 2.00 5 Milk Odd fatty acids (g/dL) 0.03 0.50 0.16 0.04 0.83 10% 2.41 4 Milk omega3 (g/dL) 0.00 0.11 0.03 0.01 0.66 22% 1.73 5 Milk omega6 (g/dL) 0.01 0.33 0.10 0.03 0.72 14% 1.89 5 Milk SAT FA(g/dl)0.31 6.97 2.70 0.75 0.99 3%10.22 1牛奶unsat(g/dl)0.14 3.86 3.86 1.25 0.39 0.97 5%5.75 2牛奶单fa(g/dl)(g/dl)0.12 0.12 3.42 3.42 3.42 1.08 0.35 0.35 0.35 0.30 0.77 77 13.77 13.02牛奶pufa(g/dl)dl) 2.10 4牛奶SCFA(g/dl)0.05 0.80 0.35 0.10 0.93 7%3.88 3牛奶LCFA(g/dl)0.19 4.79 4.79 1.59 0.52 0.52 0.95 7%4.52 2牛奶MCFA(G/DL)
图3。对前后语音获得的血流动力学反应。从刺激发作中,在-5至35s之间绘制了婴儿和HBB变化的时间疗程。(a)显示了5个月大的婴儿的结果,(b)表示10个月大的婴儿的结果。左图显示左半球的结果,右面板对应于右半球。使用基于群集的置换方法,在5个月大的和10个月大的婴儿中鉴定出簇对前后语音的显着反应(p <.05)。HBO:含氧血红蛋白,HBB:脱氧血红蛋白,HB:血红蛋白。fw:前言,BW:向后的语音。
摘要:本研究检查了行为表现的演变,主观上感知的困难和前额叶皮层的血液动力学活性是在两个不同的认知任务点击执行功能的过程中认知负荷的函数。此外,它研究了这些行为,主观和神经影像数据之间的关系。在三个认知负载条件下N-BACK和随机数生成任务的执行过程中,使用连续波功能的近红外功能近红外的近红外表格扫描了19岁的右手年轻人(18-22岁)。在腹外侧和背外侧前额叶皮层上,将四个发射极和四个受体选择固定在双侧,以记录血液动力学的变化。自我报告的量表揭示了人们所感知的困难。这项研究的发现表明,越来越多的认知负荷降低了行为表现并增加了感知的困难。与一背条件相比,随机数生成任务的三个认知载荷以及在两背和三背的参数量增加了参数。此外,在腹外侧前额叶皮层中的血液动力学活性在两项认知任务(随机数生成和N-背包任务)中的血液动力学活性在腹侧前额叶皮层中比背外侧前皮层更大。最后,结果强调了脑充氧与行为表现之间的一些联系,但没有主观上感知的困难。我们的结果表明,认知负荷会影响执行绩效和困难,并且可以使用FNIRS来指定前额叶皮层对涉及抑制和工作记忆更新的执行任务的影响。
2 2北京北京北京医学科学与北京北京大学北京大学北京大学和北京大学的神经外科医学院神经外科部中国天津的天金医科大学,北京北京北京北京医院6脑计算机界面过渡研究中心,中国北京,7杭州明州脑康复医院7 11北京脑疾病研究所,中国北京2北京北京北京医学科学与北京北京大学北京大学北京大学和北京大学的神经外科医学院神经外科部中国天津的天金医科大学,北京北京北京北京医院6脑计算机界面过渡研究中心,中国北京,7杭州明州脑康复医院7 11北京脑疾病研究所,中国北京
抽象的傅立叶变换红外光谱(FTIR)是一种具有傅立叶变换的红外光谱,用于检测和分析光谱结果。此方法用于定性和定量分析波数范围14000 cm -1 –10 cm -1的有机和无机分子。基于这些波数,红外区域分为三个区域,即近红外,中红外和远红外。该方法中使用的工具是FTIR分光光度计,其工作原理基于能量与材料之间的相互作用。这种方法是快速,无损,简单的样品制备,易用性,使用少量溶剂,因此与其他HPLC和光谱方法相比,它在环保方面友好。但是,此方法中的采样空间相对较小,因此可以阻止红外线。使用的研究方法是来自2005 - 2023年期间出版年的20条研究文章的系统文献综述(SLR)。基于对阿莫西林,五氧环肽,环丙沙星,双氯氟乙烯酸钠,头孢曲松钠,ibuprofen,valsartan和cefadroxil化合物在药物中可以使用这种方法进行分析和有机化的构造的结果。根据印尼药典IV版,分析的所有化合物浓度符合内容要求,该版本不少于90%,不超过110%。
项目详细信息:动机:中红外(miR)光谱是一种强大的工具,可通过其独特的振动吸收特征(波长〜2-14 µm)来识别生化物质 - 在革命性技术中扮演至关重要的作用,使生物医学诊断,远程诊断和环境监视。不幸的是,miR光谱传感/成像被认为是繁琐的,昂贵的,通常是在实验室中固定的。对缩小传统光谱系统的技术挑战仍然存在 - 从光源,传感机制(由于相互作用弱)到检测子系统。metasurfaces为下一代多功能miR传感技术提供了令人兴奋的途径。元面是3D超材料的2D等效物:人工设计的材料,其特性在自然界中不可能找到。光子跨国使用子波结构(元原子)阵列内的纳米级光 - 含量相互作用来操纵电磁波。但是,光子学中的常规前向设计过程导致最终的设备功能和性能不足,没有明显的方法进行。AI驱动的逆设计方法提供了光子结构设计的新范式,以克服传统方法。项目:这个跨学科的博士学位项目将使用逆设计方法开发多功能光子跨度,用于非常规MIR光谱传感和高光谱成像技术。该博士学位的目标是开发了下一代mir技术的家族。C. Williams博士(PI),位于CMRI中,我们将调查(1)热发射微型源,这些微型源操纵热发射,超出了经典的各向同性,宽带和非偏振黑体发射; (2)增强与靶分子相关的分子振动吸收模式(包括葡萄糖,与工业伴侣结合); (3)用于超敏感传感的光驱动光热传感器。技能开发:研究跨越基本的光学物理学到应用程序,学生将在博士项目期间开发多样化且备受追捧的技能,包括:使用AI /机器学习方法,电磁模拟的计算光学器件(包括Lumerical FDTD和comsol),最先进的洁净室内的纳米制作(包括电子束光刻,物理蒸气沉积和两光子聚合3D打印),电形系统表征,感应性能的验证和高级数据分析。埃克塞特大学:埃克塞特物理学系在光学物理,光子设备开发和超材料方面具有广泛的专业知识。学生将拥有世界一流的研究设施,并基于超材料研究与创新中心(CMRI):一个学术,工业和政府合作伙伴的社区,可利用从理论到应用的世界领先的研究卓越研究,并启用模拟,测量和基于基于Metamagatials和Metamagematialial的设备。
微塑性污染已成为全球重要的环境问题,影响了海洋,陆地和大气生态系统。随着微塑性污染继续加剧,需要精确,有效和可扩展的检测方法的需求正在增长。本评论重点介绍了微型检测技术的最新进展,特别关注激光直接红外(LDIR)光谱法。利用量子级联激光器(QCL),LDIR具有快速,敏感和自动检测功能。与诸如傅立叶变换红外(FTIR)和拉曼光谱技术等传统技术相比,它大大减少了分析时间,使其非常适合大规模的环境监测。其识别小至10μm的颗粒的能力,结合了增强的波长精度,将LDIR定位为跨各种环境矩阵的微型分析的有前途的工具。尽管有一些局限性,例如较窄的光谱范围,但LDIR的较高速度和精确度使其成为理解和解决全球微型塑料危机的关键进步。