1.1 Electromagnetic Spectrum and Atmospheric Transmission 2 1.2 Blackbody Radiation 4 1.3 A Day in the Life of a Photon 7 1.4 Refraction and Refractive Index 10 1.4.1 Birefringence 15 1.4.2 Preference for cubic materials 18 1.5 Reflection and Transmission 20 1.5.1 Transmission of an absorbing window 22 1.5.2 Etalon effect 23 1.6 Optical Constants n and k 26 1.7 Behavior of Absorption Coefficient and Refractive Index 28 1.8 Transmission Spectra of Infrared Materials 30 1.9 Measuring the Absorption Coefficient 43 1.9.1 Direct transmittance measurements 43 1.9.2 Laser calorimetry 46 1.9.3 Photothermal common-path interferometry 49 1.10 Emittance 53 1.10.1 Absorption coefficients of sapphire, spinel, and ALON near their 5 m m absorption cutoff 58 1.11 Effect在吸收和发射时的温度58 1.12半导体中的游离载体吸收60 1.13是什么使窗户中部或长波成为什么?67 1.14“两色”材料76 1.15杂质中的红外窗户吸收特征78 1.15.1热榨氟化镁78 1.15.2 OH在多晶氧化物中79 1.15.1 1.15.3标准奖励蒸气剂量固定Zns 80 1.15.4 Co 2 co 2 co 2 ex co 2 ex co prapped ore proper ot ex ex ex <多cer ex ex <多cer <
使用微波和红外波长对地球的Atmo球形状态进行了远程测量[1,2]。涉及这些光谱区域的物理考虑包括在微波波长度上具有相对较高的云渗透能力以及红外波长处的相对急剧的加权函数,尤其是在4 µM附近的短波区域中,普兰克非线性非线性会进一步提高温度敏感性。 红外光谱仪技术在过去15年左右的时间内已明显发展,从而导致了沿狭窄的大气吸收特征间隔的数千个频段的同时光谱采样[3]。 于2002年5月推出的大气红外发声器(AIRS)的尺寸为3.7至15.4 µm,并于2006年推出的红外大气发声干涉仪(IASI),尺寸为8461个通道,3.6至15.5 µm [4,5]。 这些传感器以及类似的传感器作为国家极性操作的环境卫星系统(NPOESS)和气象卫星(Meteo SAT)第三代系统的一部分,从而通过使用高度光谱测量,从而实质上改善了大气的声音,从而在整个大气中产生更大的垂直分辨率[6]。涉及这些光谱区域的物理考虑包括在微波波长度上具有相对较高的云渗透能力以及红外波长处的相对急剧的加权函数,尤其是在4 µM附近的短波区域中,普兰克非线性非线性会进一步提高温度敏感性。红外光谱仪技术在过去15年左右的时间内已明显发展,从而导致了沿狭窄的大气吸收特征间隔的数千个频段的同时光谱采样[3]。于2002年5月推出的大气红外发声器(AIRS)的尺寸为3.7至15.4 µm,并于2006年推出的红外大气发声干涉仪(IASI),尺寸为8461个通道,3.6至15.5 µm [4,5]。这些传感器以及类似的传感器作为国家极性操作的环境卫星系统(NPOESS)和气象卫星(Meteo SAT)第三代系统的一部分,从而通过使用高度光谱测量,从而实质上改善了大气的声音,从而在整个大气中产生更大的垂直分辨率[6]。
2014 年,LASP 与阿联酋穆罕默德·本·拉希德航天中心 (MBRSC) 合作开发了阿联酋火星任务 (EMM)。该实验室与阿联酋管理人员、工程师、科学家和任务运营商合作开发、建造和操作该任务的希望号航天器。LASP 与 MBRSC、亚利桑那州立大学和加州大学伯克利分校的空间科学实验室合作,开发并建造了三种科学仪器:阿联酋火星紫外光谱仪 (EMUS)、阿联酋探测成像仪 (EXI) 和阿联酋火星红外光谱仪 (EMIRS)。EMM 于 2020 年 7 月 19 日从日本发射,并于 2021 年 2 月 9 日进入火星轨道。
基于具有可见的红外光子对源的非线性干涉仪,利用成对生成过程的量子干扰,红外量子光谱仪,可以通过可见的光子检测来提取样品的红外光学特性,而无需用于基础光学源或检测器。我们为量子傅立叶转换红外(QFTIR)光谱制定了理论框架。所提出的傅立叶分析方法完全利用了干涉图中的相位信息,使我们能够在简单设置中确定复杂的透射率和光学常数,而无需用于光谱选择的任何色散光学器件。在实验演示中,使用低增益状态下操作的QFTIR在近红外区域测量了带通滤波器和硅胶折射率的透射光谱;这些结果与使用常规光谱仪和从参考文献估算的值非常吻合。这些示范证明了QFTIR光谱的有效性和巨大潜力。
Studying the changing middle atmosphere at unprecedented resolutions - CAIROS – Constellation of Atmospheric hIgh Resolution Occultation Spectrometers Damien Weidmann, Sophie Godin-Beekmann, William Bell, Bernd Funke, Michaela Hegglin, Brian Kerridge, Miyazaki Kazuyuki, William Randel, Keith Shine, Christopher Sioris, Michiel Van Weele, Vincent-Henri Peuch,Peter Hoor,
光源特性。为了实现便携式传感或片上实验室功能的低成本、稳定的光谱复制,近年来高分辨率片上光谱仪的开发取得了长足进步。传统的片上光谱仪通常基于梯阶光栅[1–3]和阵列波导光栅[2,4–7],需要精心设计才能满足目标光谱要求。这些器件的光谱分辨率与光路长度成比例,因此占用面积相对较大(≈1-2 cm2)。另一种很有前途的片上宽带光谱仪方法是将微机电系统 (MEMS) 技术与傅里叶变换红外光谱相结合。[8–14] 这些器件通常通过深蚀刻硅制成,因此不适合可见光波长范围内的应用。Mortada 等人介绍了一种不同的基于 MEMS 的架构,利用光在空气中的传播。可以将操作范围扩展到可见光波长,同时在 635 nm 波长下具有中等分辨率。[9]
•通过利用Nicolet Apex FTIR光谱仪的先进技术来升级您的故障分析功能,该技术与我们的FTIR显微镜,TGA-IR系统以及其他各种配件毫不费力地集成在一起,以促进对小颗粒或表征药物表征的缺陷分析。
许多有毒物质和危险化学品都以各种液体、气体和固体形式存在。无论是军事、执法还是民用,显然都需要在安全距离内准确、快速地检测化学品。2008 年,Block Engineering(又名 Block MEMS)从陆军获得了一项小型企业创新研究 (SBIR) 合同,以开发用于超灵敏有毒化学品检测的微机电系统 (MEMS) 增强型激光光谱仪。其基本概念是使用激光在远处、空气中或表面上检测痕量化学品。Block 的三种主要产品 LaserTune TM 、LaserSense TM 和 Laser Warn TM 是专门针对研究机构、原始设备制造商 (OEM)、石油和天然气行业以及军事和
从有机材料或荧光探针中获得的荧光光谱是控制和评估材料功能和特性的重要参数,例如峰值波长和荧光强度。但是,荧光光谱通常显示时间整合的信息,因此,当材料包含多种物质和反应性元素时,它们的荧光光谱只能作为集成信息获取。在这种情况下,一种有效的方法是通过使用时轴参数来观察光发射动力学。这通常称为荧光寿命测量,其中通过脉冲光激发的物质返回其基态所需的时间是在亚纳秒到毫秒到毫秒的区域中测量的。此测量允许获得更多信息,例如在相同的波长和材料中存在的百分比等多种不同的荧光寿命等。