上下文。詹姆斯·韦伯(James Webb)太空望远镜(JWST)捕获了有史以来最清晰的红外图像,这是一个原型中等辐照的光子主导区域(PDR),它完全代表了大多数UV-rumumination-the Milecular Soleculin ass the Milecular速度和星星形成的星座。目标。我们研究了一个巨大的恒星在分子云边缘发出的远 - 硫酸酯(FUV)辐射的影响,就光蒸发,电离,解离,H 2激发和粉尘加热而言。我们还旨在限制PDR边缘的结构及其照明条件。方法。我们使用Nircam和Miri获得了17个宽带和6个窄带地图,在宽光谱范围为0.7至28 µm。我们绘制了灰尘发射,包括芳香和脂肪族红外(IR)带,散射光和几个气相线(例如,Paα,Brα,H 2 1-0 S(1)在2.12 µm时)。为了进行分析,我们还将1.1和1.6 µm的两个HST-WFC3图与HS-Stis光谱观测到Hα线相关联。结果。我们以0.1至1''的角度分辨率探测了马头边缘的结构,并解决了其空间复杂性(相当于2×10-4至2×10 - 3 PC或40至400 au,在400 pc的距离处)。我们检测到一个微弱的横纹特征网络,该网络垂直于PDR前面延伸至Nircam的H II区域,Miri和Miri对纳米谷物发射敏感的过滤器以及1.1 µm的HST滤波器中的敏感,从而散布于较大的晶粒散布的光线。这确实可能是第一次检测到蒸发流中灰尘颗粒的夹带。在PDR的照明边缘,H 2的1-0 s(1)线的丝状结构在尺度上呈现出众多尖锐的子结构。与尘埃发射相比,沿边缘沿狭窄的层(宽度约为1'',对应于2×10 - 3 pc或400 au),与灰尘发射相比,H 2发射过量。电离正面和解离前在PDR的外边缘后面出现在距离1-2'',并且似乎在空间上重合,表明中性原子层的厚度很小(低于100 au)。所有宽带图都呈现出照明边缘和内部区域之间的颜色变化。在与天空平面相比,照亮的星σ-orionis略有倾斜的情况下,这可以通过灰尘衰减来解释,从而使马头以倾斜的角度从后面照亮。与Hα,PAα和BRα线中测得的排放的预测偏差也表明灰尘衰减。使用非常简单的模型,我们使用数据来得出灭绝曲线的主要光谱特征。在3 µm处的灭绝少量可能归因于在密集区域形成的晶粒上冰冷的H 2 O层。我们还将衰减曲线从PDR衍生为0.7至25 µm。在跨越马头内部区域的所有视线中,尤其是在IR峰位置周围,在JWST的整个光谱范围内,灰尘衰减似乎不可忽略。
胶体半导体量子点/石墨烯范德华 (vdW) 异质结利用量子点 (QDs) 增强的光物质相互作用和光谱稳定性以及石墨烯中卓越的电荷迁移率,为增益或外部量子效率高达 10 10 的非制冷红外光电探测器提供了一种有前途的替代方案。在这些 QD/石墨烯范德华异质结构中,QD/石墨烯界面在控制光电过程(包括激子解离、电荷注入和传输)方面起着关键作用。具体而言,范德华界面处的电荷陷阱会增加噪声、降低响应度和响应速度。本文重点介绍了我们在设计范德华异质结界面以实现更高效的电荷转移、从而获得更高的光响应度、D* 和响应速度方面的最新进展。这些结果表明范德华异质结界面工程在 QD/石墨烯光电探测器中的重要性,这可能为低成本、可印刷和灵活的红外探测器和成像系统提供有前途的途径。
Q11. MCT 如何有助于主动成像?在主动成像中,系统用人眼安全的光子爆发淹没感兴趣的场景,然后使探测器仅在预期激光照射目标反射时“看到”能量。来自目标前景和背景的令人困惑的反射被忽略,因为它们到达得太早或太晚,并且生成的图像仅包含高对比度目标信息。
Q11。MCT 如何促进主动成像?在主动成像中,系统用人眼安全的光子爆发淹没感兴趣的场景,然后使探测器仅在预期激光照射目标反射时“看到”能量。来自目标前景和背景的混乱反射被忽略,因为它们到达得太早或太晚,并且生成的图像仅包含高对比度目标信息。