需要一系列替代杂草控制方案来多样化和维持杂草管理计划,以及减轻/防止对杂草控制策略(化学和非化学)产生抗药性。初步评估和审查已确定一系列适合用作谷物生产系统中特定地点杂草控制处理的技术。这些技术包括激光、电动除草、水射流切割、定向能(蓝光 + 中波红外辐射)和行间割草。为了激发人们对这些技术的商业兴趣,需要明确确定澳大利亚谷物环境中的杂草控制能力。将进行技术特定研究和开发,以确定杂草控制效果、适当的交付时间以及在谷物生产系统中的适用性。
在获得专利的 Delta 混合室内,形成均匀的燃气-空气混合物,并输送到穿孔燃烧器砖 [预热至约 300° C]。混合物流经每个燃烧器砖的约 3,600 个孔,并在那里点燃。混合物在表面下方燃烧,加热表面的板材。燃烧器砖前的辐射网格产生“乒乓效应”,其中热辐射被反射回砖 - 积极的效果是辐射功率增加 [见右图]。表面温度约为 950° C,燃气消耗量更低。产生红外辐射 [也称为热辐射]。它通过反射器进行管理,并被引导到地板上的占用区域,在那里为人、地板和物体供暖。
,然后您通过红外辐射提供热量,并在非常低的真空条件下接触。然后该过程完成了,您可以使用加压测试,Pirani与电容度计,您基本上将将产品删除到一个容器中,您可以移动到任何地方以填充内部。因此,在IMA生活中,它们基本上具有相同的冻结过程。这是一个低温柱。但是他们拥有的是两个冷凝器,并且可以进行连续的喷雾干燥过程。您冻结颗粒,将它们收集在中间室中,然后将它们倒入干燥室,其中您有某种传送带,将冷冻的颗粒移动到它们实际干燥。我建议您查看那里的链接,并可以从他们的网站上获取一些详细信息。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助类似激光的红外辐射来确定。产生这种波长可调的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子穿过波荡器中的非常强的磁场。这些波荡器使电子产生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并产生红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己独特的振动光谱 - 就像指纹一样,可以借助类似激光的红外辐射来确定。产生这种波长可调的强红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子穿过波荡器中的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子——以集中、强烈的光束形式。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
图1. 结构示意图及在正入射光下模拟得到的吸收光谱。(a)红外探测器的探测机理。目标的红外辐射透过大气后被红外探测器捕获。(b)双层超薄膜示意图及GST在不同状态之间的转变机制。当温度超过结晶温度𝑇𝑇 𝑐𝑐时,GST会逐渐由非晶态转变为结晶态,而一旦温度超过熔点𝑇𝑇 𝑚𝑚后,经过快速退火,GST又可以变回非晶态。(c)光谱椭偏仪测得的红外波段不同状态下GST的相对介电常数。(d)双相态超薄膜对正入射光的吸收光谱及大气透过光谱。